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1 Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder and is affecting millions of individuals
worldwide. Early detection and accurate assessment of disease severity are crucial for effective
management and intervention strategies. Speech impairments are common in PD patients and can
provide valuable insights into disease progression. In recent years, machine learning techniques
applied to speech data have shown promise in predicting PD severity based on various speech fea-
tures. Features extracted from speech signals, such as Mel-Frequency Cepstral Coefficients (MFCC),
Chroma, and Delta features, have been explored for their potential to capture underlying patterns
related to PD severity. This research aims to investigate the influence of different speech features
on predicting the severity of PD. Specifically, the focus is on MFCC, Chroma, and Delta features,
hypothesizing that temporal changes captured by Delta features may be particularly informative for
assessing disease severity. By examining the performance of different features, the aim is to identify
the most relevant features for predicting PD severity in Italian-speaking patients. To achieve this,
a Transformer-based model is built, known for its effectiveness in sequence modelling tasks, to learn
the relationship between speech features and PD severity scores. Understanding the most influential
speech features in predicting PD severity can provide valuable insights for developing more accurate
and reliable diagnostic tools. Such tools can aid in early detection, monitoring disease progression,
and optimizing treatment strategies for PD patients.

2 Related work

2.1 Parkinson’s Disease

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by motor symptoms and
non-motor symptoms, such as speech and voice impairments (Skodda, Visser, and Schlegel, 2011).
The disease is characterized by neuronal loss in the brain, which causes a dopamine deficiency. The
clinical diagnosis of Parkinson’s disease is associated with many other non-motor symptoms that add
to overall disability (Poewe et al., 2017). Dysarthria is common in PD and it affects articulation, and
phonation, leading to reduced speech intelligibility. Skodda, Visser, and Schlegel, 2011 found in their
research that vowel articulation was significantly reduced in PD patients compared to the control
group, particularly in male patients. Furthermore, PD patients have slower verbal communication,
and deficits in verb inflection which impairs spontaneous speech severely (Sonkaya et al., 2021).

2.2 UPDRS

The severity of Parkinson’s Disease can be estimated by the Unified Parkinson’s Disease Rating
Scale (UPDRS) (Dimauro et al., 2017). The scales are as follows:

0: Normal: No speech problems.

1: Slight: Loss of modulation, diction or volume, while all words are easy to understand.

2: Mild: Loss of modulation, diction, or volume with a few unclear words, but the overall sentences
are easy to follow.

3: Moderate: Speech is difficult to understand to the point that some, but not most, sentences
are poorly understood.

4: Severe: Most speech is difficult to understand or unintelligible.
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2.3 Automatic Speech Recognition

2.3.1 ASR models

Automatic Speech Recognition (ASR) is the process of automatically transcribing spoken language
into text. It involves the use of computational algorithms and models to convert spoken words into
written text, enabling machines to understand and interpret human speech. ASR systems typically
utilize techniques from signal processing, machine learning, and natural language processing to
accurately recognize and transcribe spoken language (Yu and Deng, 2016).
There has been research on language processing, which included researching which model could do
this task the best (Devlin et al., 2018). As Dong et al., 2018 showed in their research, a Transformer
model achieves a low word error rate (WER) and is trained relatively fast. The models are designed
for sequence-to-sequence tasks, such that they are suitable for processing sequential data (Vaswani
et al., 2017). Since the UPDRS prediction involves analysing sequential features from speech data, a
transformer model can effectively capture the temporal dependencies and patterns in the PD data.
Also, the models can utilize self-attention mechanisms to weigh the importance of different input
elements when making predictions (Vaswani et al., 2017). For the UPDRS prediction, it is useful to
focus on more relevant features which may be more informative than others.

2.3.2 Acoustic features

ASR systems can be used to analyze speech samples from individuals with PD by extracting various
acoustic features. These features can include:

• Phonatory features: pitch, jitter and shimmer.

• Articulatory features: formant frequencies, speech rate, articulation rate.

• Prosodic features: intonation patterns, stress, rhythm.

Phonatory features refer in general to voice quality and loudness variations (Duffy et al., 2012). PD
patients may present differences in their pitch, jitter and shimmer when speaking. Pitch variability
may increase, leading eventually to a flat speech pattern known as hypophonia (Liotti et al., 2003).
This speech feature is also closely related to the fundamental frequency of the PD patient’s vibration
during speech production. Jitter measures the variation in this fundamental frequency of the vocal
vibration (Azadi et al., 2021). With PD, the jitter can be increased and this can result in irregularities
in the vocal pitch. Azadi et al., 2021 describe shimmer as the variation in the amplitude of the speech
wave. PD patients can have increased shimmer which may lead to fluctuations in loudness, this can
be heard as a breathy or hoarse voice.
Second, the articulatory features in general are described as manner of speaking or articulation
(Moro-Velazquez et al., 2021). It includes formant frequencies which are frequency peaks in the
spectrum with high peaks of energy within the vocal spectrum (Malmkjaer, 2009). Another key
aspect of articulatory features is the speech rate. For PD patients, speech acceleration is higher than
for healthy patients. They also make longer pauses at the end of words (Skodda and Schlegel, 2008).
The last feature is the articulation rate. This is the speed at which sounds are articulated. As PD
patients have a form of dysarthria, this rate is influenced by their muscle control and coordination,
resulting in a slower rate (Skodda, Visser, and Schlegel, 2011).
Finally, prosodic features capture changes in the fundamental frequency, amplitude of the voice
and duration (Pell, 1996). It also can capture whether a sentence is a statement or a question.
Furthermore, it can indicate whether the speaker is angry or sad. These features include intonation
patterns. For Parkinsonian speakers, the intonation is significantly reduced (Skodda, Grönheit, and
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Schlegel, 2011). Stress and rhythm are the other prosodic features, where stress contributes to the
rhythm of speech.
According to (Harel et al., 2004) the most influential features are F0 variability and VOT (Voice
Onset Time). These features were found to significantly change in individuals with PD following
the initiation of pharmacological treatment. The study suggests that these changes in speech may
manifest several years before the onset of obvious symptoms and an initial diagnosis. Additionally,
the decreased dispersion around the mean F0 relates perceptually to less intonation or monotone
inflection patterns, which is indicative of changes in the ability to control speech.
Based on these speech features and the literature I can make a hypothesis about which features will
be the most influential when predicting the UPDRS of the PD patients. The speech features related
to phonation, articulation and prosody are expected to be the most influential when predicting
the UPDRS scores. Specifically, variations in pitch, jitter, and shimmer are likely to correlate
strongly with UPDRS scores. Jitter and shimmer in particular would both in particular be increased
in the speech analysis of the patients. Parkinsonian speech often exhibits monotonicity, reduced
loudness (hypophonia), and fluctuations in pitch and voice quality, which are indicative of disease
severity. Also, alterations in formant frequencies, speech rate, and articulation rate are expected to
be influential predictors. The rate at which the patients speak is slower. Dysarthria in Parkinson’s
disease can lead to imprecise articulation, reduced speech rate, and changes in vowel production,
which may reflect disease progression. Intonation patterns, stress, and rhythm are also likely to
play a significant role in predicting UPDRS scores. Reduced intonation variability, abnormal stress
patterns, and dysrhythmic speech are common characteristics of Parkinsonian speech and may be
sensitive markers of disease severity.

2.3.3 Subsets of the features

Making the hypothesis more specific, there are three subsets which capture the phonation, articu-
lation and prosody of speech. Referring to the speech features in table 2, MFCC 1 to 13 and the
Chroma Features capture acoustic properties related to both phonation and articulation and are
likely to be more influential in predicting UPDRS scores compared to other features (Tracey et al.,
2023). Another feature that would be the most influential are all of the Delta Features. These
features represent temporal changes in the corresponding non-Delta features and may provide addi-
tional information about speech dynamics, potentially enhancing the predictive power for UPDRS
scores. The other features such as Zero Crossing Rate, Energy and Spectral Centroid may capture
the nuances of the speech of the patients but they are not as influential as other features or their
influence is uncertain (Duffy et al., 2012). Out of these three categories, the most influential feature
would be the Delta Features. These features capture the best the characteristics of the patient’s
speech which are the most related to PD.

3 Method

3.1 Speech task

The following tasks were used to record the speech and voice of the participants. Note that not
all tasks are used for all participants, see next section which was used for which participant. The
Italian text ”IL ROMARRO DELLA ZIA” (see Appendix 9.1) was not chosen at random since the
phonemically balanced text contains according to Dimauro et al., 2017 interesting features such as
it is sufficiently long and requires for the patient to breathe with some effort, while it stresses for
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resistance. It also contains complex phonetics to test the patient’s ability to pronounce difficult
sounds in a short time. Finally, it requires the patient to make changes in expression while reading.

a) 2 readings of a phonemically balanced text spaced by a pause (30 sec) (see Appendix 9.1 for
the Italian text ”IL ROMARRO DELLA ZIA”).

b) execution of the syllable ‘pa’ (5 sec), pause (20 sec), execution of the syllable ‘ta’ (5 sec);

c) 2 phonation of the vocal ‘a’;

d) 2 phonation of the vocal ‘e’;

e) 2 phonation of the vocal ‘i’;

f) 2 phonation of the vocal ‘o’;

g) 2 phonation of the vocal ‘e’;

h) reading of some phonemically balanced words, pause (1 min), and reading of some phonemically
balanced phrases (see Appendix 9.1 for the words and phrases).

3.2 Participants

The original data consisted of fifteen healthy people aged between 19 and 29 years and they were
asked to perform a reading task where they precisely read a balanced Italian text and balanced
words. The participants included 13 men and 2 women from the Puglia region in Italy and 13 men
and 2 women from the Brindisi area.
The same reading experiment was conducted on 22 healthy elderly persons, aged between 60 and
77 years. All participants came from Bari which is in the Puglia region in Italy, of which were
10 men and 12 women. None of the healthy elderly participants reported any speech or language
impairments.
The last group of the experiment is the group with Parkinsons’ Disease group. This group consists
of 28 patients aged between 40 and 80 years (see figure 1 for the age distribution). There were
19 men and 9 women (see figure 1 for the sex distribution) of which 27 were from the Bari area
from the Puglia region in Italy and one from Venice. The patients reported that none of them
had any speech or language disorders unrelated to the PD symptoms prior to the study conducted
by Dimauro et al., 2017. The severity of their disease was classified by specialists on the scale of
UPDRS (see the UPDRS scores in figure 6 and 1 for the distribution of the UPDRS scores). The
patients performed the speech task from Appendix 9.1 in the same conditions as was described for
the healthy participants.
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(a) Distribution of the age of the
PD patients.

(b) Distribution of the UPDRS
of the PD patients.

(c) Distribution of the sex of the
PD patients.

Figure 1: Distrubtion of the PD patients.

However, for some of the speech tasks some data was missing. For the reading of the phonemically
balanced text (see Appendix 9.1 for the Italian text), some of the data was incomplete. The data of
the PD patients with a UPDRS scale of 4 were missing. The reading of some phonemically balanced
words was also missing. Lastly, for all phonation of the vocal vowels, the data was missing from one
of the patients for all the second readings.

3.3 Feature selection

From all the extracted features, one subset was initiated with only the MFCC features, one with
the Chroma features and the last one with the Delta features. The last subset was also divided
into two other subsets consisting of the Delta MFCC and Delta Chroma features. See table 3 in
the Appendices (section 9) for the subsets based on the most relevant features. After the features
are divided, the model will be trained on these subsets and the most relevant feature will become
apparent. See the next section for the model’s architecture and evaluation metrics.

4 Experiment

4.1 Feature Extraction

A tool to listen to audio files was used to extract the features and understand their sounds. The
Python library pyAudioAnalysis for audio feature extraction was used (Giannakopoulos, 2015). The
feature extraction resulted in features and representations as listed in table 2. Instead of focusing on
every little detail, the average of each of the features was taken. This was done for each audio file,
collecting all the averages together. Then the dataset was assembled by concatenating the features
for each of the different speech tasks for all of the Parkinson’s patients.

4.2 Model’s architecture

A Transformer-based regression model for predicting UPDRS scores from the extracted audio fea-
tures was implemented. The input data is first passed through a stack of transformer encoder layers.
These transformer layers employ self-attention mechanisms to capture relationships between differ-
ent parts of the input sequence. Each transformer encoder layer is composed of multiple sub-layers,
including multi-head self-attention and position-wise feedforward networks. After encoding the in-
put sequence with the transformer layers, the output is passed through a series of feedforward neural
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network layers. The hidden layers consist of linear transformation followed by activation functions
(ReLU), batch normalization, and dropout regularization. Finally, the output of the feedforward
neural network layers is passed through a linear transformation to produce the final prediction.
The output layer maps the hidden representations to a single output value, which is the predicted
UPDRS score. See the code below for the full implementation of the model.

1 class TransformerModel(nn.Module):
2 def __init__(self, input_dim, hidden_dim=128, num_layers=2, dropout=0.1):
3 super(TransformerModel, self).__init__()
4 self.transformer_layers = nn.TransformerEncoder(
5 nn.TransformerEncoderLayer(d_model=input_dim, nhead=1, dropout=dropout),
6 num_layers=num_layers
7 )
8 self.hidden_layers = nn.Sequential(
9 nn.Linear(input_dim, hidden_dim),

10 nn.ReLU(),
11 nn.BatchNorm1d(hidden_dim),
12 nn.Dropout(dropout),
13 nn.Linear(hidden_dim, hidden_dim),
14 nn.ReLU(),
15 nn.BatchNorm1d(hidden_dim),
16 nn.Dropout(dropout)
17 )
18 self.output_layer = nn.Linear(hidden_dim, 1)
19

20 def forward(self, x):
21 x = self.transformer_layers(x)
22 x = self.hidden_layers(x)
23 x = self.output_layer(x)
24 return x.squeeze()

Listing 1: Architecture of the Transformer model.

The model was trained using the Mean Squared Error (MSE) loss function and optimized using the
Adam optimizer. A batch size of 32 was utilized and the model was trained for 50 epochs with a
learning rate of 0.2.
The dataset was split into training and testing sets with a ratio of 80:20, ensuring that the same
patient’s data did not appear in both sets. The training set was used to train the model, while the
testing set was used to evaluate its performance.

4.2.1 Evaluation metrics

The model’s performance was evaluated using two primary metrics:

1. Mean Absolute Error (MAE): This metric measures the average absolute difference be-
tween the predicted and actual UPDRS scores. Lower values indicate better performance.

2. Mean Squared Error (MSE): This metric measures the average squared difference between
the predicted and actual UPDRS scores. Again, lower values indicate better performance.

The different subsets (see table 3 from Appendix 9.4) will be evaluated on the metric above. The
lower the value, the better the model was able to predict the UPDRS score of that patient.
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5 Results

5.1 Results based on the losses and MSE

The loss curves for the three subfeatures are displayed in figure 2. The Delta features are also divided
into subfeatures of which the training losses can be seen in figure 3.

(a) Training loss curve of the MFCC fea-
tures.

(b) Training loss curve of the Chroma fea-
tures.

(c) Training loss curve of the Delta features.

Figure 2: Training loss curves of the features.

(a) Training loss curve of the MFCC Delta
features.

(b) Training loss curve of the Chroma Delta
features.

Figure 3: Training loss curves of the subfeatures of the Delta features.

As can be seen in figures 2 and 3, the training converges very quickly after 20 epochs.
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Features Test Loss Training MAE Training MSE Testing MAE Testing MSE

MFCC 1.7656 0.8260 1.2417 0.9417 1.7656
Chroma 1.7504 0.8345 1.2402 0.9473 1.7504
Delta 1.7293 0.8488 1.2399 0.9571 1.7293
MFCC Delta 1.7260 0.8512 1.2401 0.9588 1.7260
Chroma Delta 1.7005 0.8713 1.2439 0.9727 1.7005

Table 1: The test loss, MAE and MSE of the different features.

Comparing the features, the Chroma Delta features have the lowest Test Loss (1.7005). Additionally,
the Training MAE (0.8713) and Testing MAE (0.9727) for Chroma Delta are competitive, and its
Testing MSE (1.7005) is also the lowest, followed closely by MFCC Delta (1.7260). Therefore,
Chroma Delta is considered the best-performing feature according to the metric from table 1.

5.2 Results based on accuracy

After training the Transformer model for 50 epochs, a training accuracy of 32.11% and a testing
accuracy of 35.29% was achieved. See figures 4 and 5 for the confusion matrices. As can be seen
in the confusion matrices, the model predicts either 0 or 1 for the UPDRS for all the participants.
Solely based on these results, it cannot be concluded that one of the models with the trained features
is better than another feature.

(a) Confusion matrix of the
MFCC features.

(b) Confusion matrix of the
Chroma features.

(c) Confusion matrix of the
Delta features.

Figure 4: Confusion matrices of the features.
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(a) Confusion matrix of the MFCC Delta
features.

(b) Confusion matrix of the Chroma Delta
features.

Figure 5: Confusion matrices of the subfeatures of the Delta features.

6 Discussion

6.1 Discussion on Performance Metrics

The loss curves for the three subfeatures, namely MFCC, Chroma, and Delta features, are dis-
played in figure 2, while the training losses for the Delta features’ subfeatures are shown in figure 3.
Comparing these features, it’s observed that the Chroma Delta features exhibit the lowest test loss
(1.7005) among all features, indicating superior performance. Additionally, both the training MAE
(0.8713) and testing MAE (0.9727) for Chroma Delta are competitive, and its testing MSE (1.7005)
is the lowest, followed closely by MFCC Delta (1.7260). Therefore, Chroma Delta can be considered
the best-performing feature based on the metrics from table 1.
Regarding the results based on accuracy, after training the Transformer model for 50 epochs, a
training accuracy of 32.11% and a testing accuracy of 35.29% were achieved. The confusion matrices
displayed in figures 4 and 5 illustrate that the model predicts either 0 or 1 for the UPDRS score for all
participants, indicating that the model’s predictions are not effectively capturing the variance in the
UPDRS scores. One probable reason why the accuracy is so low is that the model is solely trained
on one subset of features extracted from the speech of PD patients. To get a better prediction of
the UPDRS score, the model should get all acoustic features to learn the full characteristics of PD
speech deficiency.

6.2 Discussion on Model Performance

The obtained results suggest that although the model achieves a moderate level of accuracy, its
predictions are limited in capturing the variability in UPDRS scores. This may indicate underlying
issues with the model’s ability to learn meaningful patterns from the features or with the represen-
tation of the UPDRS scores. The discrepancy between training and testing accuracies also suggests
potential underfitting issues that need to be researched even further. Possible improvements include
exploring more complex model architectures, fine-tuning hyperparameters, and incorporating addi-
tional features or data augmentation techniques to enhance the model’s predictive power. Further
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analysis is needed to refine the model for more accurate UPDRS score predictions. Training the
model for more epochs will have no influence since the models are already converged after 20 epochs
when taking into account the training loss curves from figures 2 and 3.
As for this research, it was deliberately chosen to make the model not too complex. The sole purpose
was to investigate the influence of the different input features. By keeping the model relatively simple,
it becomes easier to isolate the effects of the individual input features when predicting the UPDRS
scores. Complex layers might obscure the impact of specific features by introducing additional layers
of abstraction. Also, too complex layers have a risk of overfitting the data. Since the dataset is
rather small, the model might tend to overfit this dataset.

6.3 Discussion on the Dataset

The dataset consists of audio recordings for different speech tasks obtained from PD patients along
with their UPDRS scores. The size of dataset is a critical point when reviewing this research. Only
28 patients participated in the original study by Dimauro et al., 2017. This small dataset might
have impacted the statistical power of the analysis. The distribution of the patients was not a
good representation of the different disease severity levels. However, for one of the speech tasks,
two patient’s data with a UPDRS score of 4 was missing. This resulted in figure 4a, where the
prediction of the UPDRS scores severely shifted towards only predicting a UPDRS score of 0 for all
of the patients.

6.4 Discussion on most Relevant Feature

As stated before, Chroma Delta is the best-performing feature based on the metrics from table 1. As
was hypothesised before according to the literature, the Delta Features would be the most influential.
The Delta Features can capture the temporal changes in the speech features. The changes in pitch
and intonation are common symptoms of PD, making Chroma Features potentially informative for
disease severity assessment.

6.5 Future Directions

For future work, the model could be improved or another model could be used. The intricate
pattern of speech features needs to be captured more effectively. For this new model fine-tuning,
data augmentation or model optimization can be used. When making this new and better model,
a better data set should be considered. A larger and more diverse dataset and a broader range of
UPDRS scores to improve model generalization should be gathered.
Another direction would be to use the outcome of this research to focus on these features, in particular
the most important feature Chroma Delta, when predicting PD in the earlier stages. These features
show promise as potential indicators of early disease onset or progression. Early prediction of PD
can significantly impact patient outcomes by enabling early intervention and personalized treatment
strategies. Identifying individuals at risk of developing PD before the onset of motor symptoms
could lead to interventions aimed at slowing disease progression and improving quality of life.

7 Conclusion

In this study, the influence of different speech features on predicting the severity of Parkinson’s
disease (PD) was investigated. Through the analysis, I found that Chroma Delta features emerged
as the most relevant feature, showing a better performance in predicting UPDRS scores compared to
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MFCC and Chroma features. These findings align with the hypothesis that temporal changes cap-
tured by Delta features are particularly informative for assessing disease severity. Despite achieving
moderate accuracy in predicting UPDRS scores, the model succeeded in capturing the variability
of UPDRS scores solely based on speech features. This suggests the need for further refinement
and exploration of more complex model architectures or additional features to improve predictive
accuracy. The dataset’s limitations, including its small size and uneven distribution across disease
severity levels, should be considered when interpreting the results. Additionally, missing data for cer-
tain patients posed challenges in model training and evaluation. Looking ahead, the insights gained
from this study could be leveraged to develop more accurate predictive models for early detection
of PD. In conclusion, while the research sheds light on the relevance of specific speech features for
predicting PD severity, further research is needed to refine models, address dataset limitations, and
translate findings into clinical practice for improved patient care and management of Parkinson’s
disease.
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9 Appendices

9.1 Italian Phrases

The phonemically balanced text in Italian language:
IL RAMARRO DELLA ZIA.
Il papà (o il babbo come dice il piccolo Dado) era sul letto. Sotto di lui, accanto al lago, sedeva
Gigi, detto Ciccio, cocco della mamma e della nonna. Vicino ad un sasso c’era una rosa rosso vivo
e lo sciocco, vedendola, la volle per la zia. La zia Lulù cercava zanzare per il suo ramarro, ma dato
che era giugno (o luglio non so bene) non ne trovava. Trovò invece una rana che saltando dalla
strada fiǹı nel lago con un grande spruzzo. Sai che fifa, la zia! Lo schizzo bagnò il suo completo
rosa che divenne giallo come un taxi. Passava di l̀ı un signore cosmopolita di nome Sardanapalo
Nabucodonosor che si innamorò della zia e la portò con sé in Afghanistan.

The phonemically balanced phrases in Italian language:

• Oggi è una bella giornata per sciare.

• Voglio una maglia di lana color ocra.

• Il motociclista attraversò una strada stretta di montagna.

• Patrizia ha pranzato a casa di Fabio.

• Questo è il tuo cappello?

• Dopo vieni a casa?

• La televisione funziona?

• Non posso aiutarti?

• Marco non è partito.

• Il medico non è impegnato.

Words in Italian:
pipa, buco, topo, dado, casa, gatto, filo, vaso, muro, neve, luna, rete, zero, scia, ciao, giro, sole,
uomo, iuta, gnomo, glielo, pozzo, brodo, plagio, treno, classe, grigio, flotta, creta, drago, frate,
spesa, stufa, scala, slitta, splende, strada, scrive, spruzzo, sgrido, sfregio, sdraio, sbrigo, prova,
calendario, autobiografia, monotono, pericoloso, montagnoso, prestigioso.
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9.2 Date on the PD group

Figure 6: The metrics from the PD participants
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9.3 All speech features

Table 2: List of Speech Features

Feature Description

Zero Crossing Rate (ZCR) Rate of sign changes in the signal
Energy Total energy of the signal
Energy Entropy Measure of energy distribution randomness
Spectral Centroid Average frequency of the spectrum
Spectral Spread Dispersion of spectral energy
Spectral Entropy Measure of spectral energy distribution randomness
Spectral Flux Rate of change of spectral energy
Spectral Rolloff Frequency below which a certain percentage of spec-

tral energy is concentrated
MFCC 1 to 13 Mel-frequency cepstral coefficients
Chroma 1 to 12 Chroma features representing energy distribution of

pitch classes
Chroma Standard Deviation Standard deviation of Chroma features
Delta ZCR Delta feature for zero crossing rate
Delta Energy Delta feature for energy
Delta Energy Entropy Delta feature for energy entropy
Delta Spectral Centroid Delta feature for spectral centroid
Delta Spectral Spread Delta feature for spectral spread
Delta Spectral Entropy Delta feature for spectral entropy
Delta Spectral Flux Delta feature for spectral flux
Delta Spectral Rolloff Delta feature for spectral rolloff
Delta MFCC 1 to 13 Delta features for MFCCs
Delta Chroma 1 to 12 Delta features for Chroma
Delta Chroma Standard Deviation Delta feature for Chroma standard deviation
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9.4 Division of the features

MFCC features Delta features Chroma features
mfcc 1 delta zcr chroma 1
mfcc 2 delta energy chroma 2
mfcc 3 delta energy entropy chroma 3
mfcc 4 delta spectral centroid chroma 4
mfcc 5 delta spectral spread chroma 5
mfcc 6 delta spectral entropy chroma 6
mfcc 7 delta spectral flux chroma 7
mfcc 8 delta spectral rolloff chroma 8
mfcc 9 delta mfcc 1 chroma 9
mfcc 10 delta mfcc 2 chroma 10
mfcc 11 delta mfcc 3 chroma 11
mfcc 12 delta mfcc 4 chroma 12
mfcc 13 delta mfcc 5 chroma std

delta mfcc 6
delta mfcc 7
delta mfcc 8
delta mfcc 9
delta mfcc 10
delta mfcc 11
delta mfcc 12
delta mfcc 13

delta chroma 1
delta chroma 2
delta chroma 3
delta chroma 4
delta chroma 5
delta chroma 6
delta chroma 7
delta chroma 8
delta chroma 9
delta chroma 10
delta chroma 11
delta chroma 12
delta chroma std

Table 3: The features which are divided into their subsets. The red features are in the subset of
delta MFCC features. The blue features are in the subset of Delta Chroma features.

9.5 Data and Source Code

The source data and code for reproducing the results are publicly available at: https://github.com/
pcrooijendijk/asrthesis.
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