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Abstract

This thesis researches the integration of Federated Learning with Large Language Models, with the
aim of enabling privacy-preserving training and inference on sensitive, distributed data. A practical
framework is developed that combines Parameter-Efficient Fine-Tuning using Low-Rank Adaptation,
retrieval augmentation methods, and security mitigations such as Homomorphic Encryption and
Differential Privacy. This setup ensures that sensitive documents never leave the client environment,
while encrypted model updates are securely aggregated at a central server.

Furthermore, the proposed system leverages permission-aware retrieval, enforcing document-level
access control during inference. This prevents the exposure of unauthorized data while still providing
meaningful local reasoning and collaboration across clients. Evaluation is conducted using both
lexical metrics (BLEU and ROUGE) and retrieval-specific scores (IXN), as well as semantic measures
(RAGAS), to assess answer quality and security enforcement. Experimental results show that while
access control may reduce answer completeness and accuracy in some cases, the framework effectively
prevents information leakage and maintains accurate response quality for authorized users.
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Chapter 1

Introduction

What if it were possible to summarize hundreds of pages of classified documents in a matter of
seconds, without ever revealing the content to users without access? Artificial Intelligence (AI)
systems are advancing to perform tasks like these without requiring human intelligence [1]. AT
has its roots in 1940 with early theories on computation using processes similar to neurons in the
human brain [2]. Over the decades, various types of A, machine learning (ML) in particular, have
significantly transformed the field in sectors like healthcare and cybersecurity.

Large Language Models (LLMs) have become experts in various applications, ranging from natural
language processing (NLP) to customer service automation and generation tasks. However, using
them also brings security risks, such as data leaks, adversarial attacks, and unauthorized access.
When organizations handle highly classified information, including state secrets, this data must be
stored and processed safely |3]. One mitigation to ensure maximum security is to handle the data
in an air-gapped network [4]. These networks contain numerous classified documents, and some of
them are many pages long. A significant amount of time could be saved if a reliable LLM could
generate accurate summaries of these documents without granting other users access to the original
content when requesting the same summary. If a user of an LLM application were able to reproduce
classified information despite only having the clearance of a normal user, it would pose a serious
risk. The problem becomes complex given that these systems do not have a built-in mechanism to
adhere to permission constraints. Some systems use prompt instructions to restrict LLM behavior
explicitly, such as “Do not answer questions about unauthorized documents.”. But depending only on
prompt-based rules is unreliable, as LLMs may fail to consistently adhere to these constraints. A
better solution is to use a combination of methods, such as filtering data and applying permission
controls across multiple layers, and aggregating the results for the LLM to process.

Training and fine-tuning LLMs to be used on classified documents requires many computational
resources. Models like GPT-4 and Gemini cost tens of millions of dollars to train, in terms of hardware,
energy, and staff expenses [5]. Even when using open-source LLMs such as Llama, these constraints
remain, setting a boundary on the possibility for smaller institutions to perform full fine-tuning using
LLMs due to these computational and financial constraints. The traditional manner of fine-tuning
involves sending large language model parameters and datasets, which becomes impractical in these
environments. This challenge arises particularly in centralized training, where limitations such as
bandwidth and storage can create a bottleneck in the process. These issues can be resolved with
Federated Learning (FL) by enabling decentralized model training. With FL, clients perform local
training on private data and only share their model parameters with a central server. This approach
reduces the transfer of the large parameters of LLMs and supports privacy goals by design [6].

However, there are still challenges with standard FL in terms of efficiency and security. In



decentralized environments, it is often intensive in terms of bandwidth to transmit the full model
parameters for LLMs. Furthermore, sharing all updates leaves the client vulnerable to privacy attacks,
such as gradient inversion attacks, which can use the shared updates to reconstruct the client’s
private data. To address communication bottlenecks, we introduce parameter-efficient fine-tuning
(PEFT) techniques, such as Low-Rank Adaptation (LoRA). This approach lowers computation
and communication costs by allowing users to modify only the trainable parameters rather than
the full model [7, [8]. However, privacy risks remain, as inference attacks are still feasible even
when LoRA is applied. Attackers can reconstruct sensitive training data from the shared LoRA
gradients, since these still encode information about token representations and co-occurrence patterns
[9]. As a result, additional privacy-preserving techniques for end-to-end security in a federated
LLM training have been proposed. Differential Privacy (DP) adds noise to model updates, thereby
limiting information leakage [10]. Homomorphic Encryption (HE) enables computation on encrypted
parameters, providing strong confidentiality without introducing additional noise [11]. We suggest a
new federated fine-tuning framework that combines FL, LoRA, DP, and HE for a secure and private
training across private datasets containing classified information, building on these privacy-preserving
techniques.

The primary problem statement of this master’s thesis is to design an FL framework that
strictly enforces permissions within an organization to prevent unauthorized access to sensitive data,
particularly for state-secret-level documents. Additionally, LLMs should operate securely, within an
air-gapped network, without compromising performance or security.

Research Questions

The following are the proposed research questions that will be answered in this thesis:

1. How can federated learning be used to train LLMs on sensitive data without exposing that
data?

(a) How can FL be adapted to support PEFT methods, in particular LoRA for LLM fine-tuning
across clients?
(b) What mechanisms during training ensure that the client data is still protected, while still

contributing to the global model improvements?

2. What are the risks of using LLMs in a federated learning setup without taking security into
account, and what mitigation can be used?
(a) What types of adversarial threats are possible in this FL setting?
(b) What mitigations can be used to defend against these threats?
3. How does permission enforcement affect the accuracy of LLM responses for authorized clients?
(a) How effective is permission enforcement in ensuring that the clients only receive answers
that are based on their private documents?

(b) What is the impact of restricted context windows on the response accuracy for different
question types?

The following main contributions were made by answering the above research questions. We
propose a secure federated LLM framework that integrates HE with LoRA adapters. It addresses
security vulnerabilities during training, under the assumption of an honest-but-curious server. The
key features include:
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1. Parameter-efficient updates: Only LoRA adapter layers are fine-tuned and shared, mini-
mizing both computational overhead and communication costs, making the framework suitable
for environments with resource limitations.

2. Limiting data leakage: DP is added to the LoRA gradients before encryption, offering a
privacy guarantee and limiting the potential for information leakage from the individual client
updates.

3. Strong data privacy through HE: By encrypting the model updates through HE, clients
were ensured that only encrypted information reaches the server. This offers end-to-end
confidentiality without solely relying on DP.

A comprehensive evaluation is done on the federated DeepSeek—-R1-Distill-Qwen—1.5B using
evaluation metrics for permission enforcement and response quality. Our results demonstrate that
the proposed framework effectively enforces access control during retrieval, significantly limiting
unauthorized access to sensitive documents while maintaining an acceptable response quality for
users with the correct permissions, as measured by BLEU, ROUGE, and RAGAS scores. The code,
data and results are available in a GitHub repository E

The remainder of this thesis is structured as follows: Chapter [2| introduces a comprehensive
background to provide the knowledge to understand the subsequent material. Chapter [3| provides a
comprehensive review of the related work. Chapter [ presents the proposed Secure Federated LLM
framework. Chapter [5| presents the chosen model, dataset, data pre-processing, and privacy/security
implementation details, followed by Chapter [6] which contains the results. Chapter [7] offers future
work and a discussion, also including limitations and implications. Finally, chapter [8| will conclude
this research.

Ihttps://github.com/pcrooijendijk/Master_Thesis
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Chapter 2

Background

In this thesis, an end-to-end secure federated large language model (LLM) framework is designed
to operate under strict privacy constraints. To better understand how this framework is built, the
required knowledge is described in the next section. First, federated learning (FL) will be addressed
as the core of the training mechanism, which enables decentralized optimization across clients without
exposing their sensitive data. Building on this, permission control will be enforced to ensure that
only authorized users can access the sensitive data. Then, to enable question-answering over sensitive
data, retrieval-augmented generation (RAG) is integrated into the pipeline. To optimize efficiency
for computation and communication overhead, parameter-efficient fine-tuning (PEFT) using LoRA
will be applied. Given rising security threats, ranging from gradient leakage and data poisoning,
the framework also incorporates the following defenses: differential privacy, secure aggregation via
homomorphic encryption, and access enforcement.

2.1 Federated Learning

The term FL was first mentioned by McMahan et al. [6], who cite that it is a machine learning
setting where multiple entities (clients) collaborate in solving a machine learning problem under
the coordination of a central server or service provider. Each client’s data is stored locally and is
not exchanged or transferred with the other clients. Instead, updates are intended for the servers’
aggregation to achieve the machine learning objective. This process of aggregating involves combining
the local models from the clients into a single global model, while maintaining the clients’ privacy
[12]. In contrast to the traditional privacy protection algorithms, DP, and k-order anonymity, FL
offers a training method that uses clients to secure the privacy of its users [13]. Instead of relying on
a third party to store data, FL primarily preserves the privacy of its users by exchanging the weights
of their model using encryption methods [14]. Centralized approaches pose challenges when the data
has a sensitive nature [15].

When combined with LLMs, FL helps conserve both computational and data resources. This eases
the workload for each client during training and inference and boosts the language models’ ability
to perform different tasks [16]. When these models are used for sensitive data, they cannot store
classified or private data locally in a centralized manner for training due to privacy reasons. FL solves
this challenge by keeping the data local for each client while still enabling improvements by using a
global model. This is critical given the known security risks of LLMs, including prompt injections,
model stealing, or gradient leakage, making decentralized training essential for safe deployment of
LLMs using private data.
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2.2 Large Language Models

LLMs such as the Generative Pre-trained Transformer (GPT) and the Llama series |17, [1§], form
the foundation of many modern language understanding and generation systems. These models can
generate human-like language based on given context since they are trained on massive amounts
of text [19]. While LLMs show impressive performances on language-based tasks, they often lack
the up-to-date knowledge and access to real-time information, which may lead to difficulties with
certain tasks. These models are slow to react to updated information, and it is computationally
heavy to fine-tune an LLM on every dataset update. Another downside of such models is that they
are prone to hallucinations: the model produces outputs which may seem correct and plausible but
are in fact either not the user’s intent or are factually incorrect [20]. Pre-trained language models
tend to produce hallucinations when they do not have access to an external memory, solely based on
the parametrized implicit knowledge base.

LLMs inherently have two major drawbacks, which are hallucinations and their hardware memory
size. Hallucinations in the models originate primarily from a lack of knowledge; the models generate
information based on their intrinsic knowledge, which is their trained dataset. Ideally, the models
should generate from knowledge or a source, or decline to answer the query rather than hallucinating
their response. Ultimately, the answer should be reliable, and information must be correctly sourced
or learned to give a proper response to the query of a user, which in turn is ready for usage in decision
making, for instance.

The other disadvantage of using LLMs in this context is their size. DeepSeek, which this research
uses, with 1.5 billion parameters, is too large to be trained end-to-end in a federated learning setup on
conventional hardware. To mitigate this constraint of limited resources, there needs to be a method
to minimize the amount of parameters that are sent back and forth, where PEFT can be used (see

section 2.4).

2.3 Retrieval Augmented Generation

To prevent the aforementioned problem of hallucinating, RAG was introduced by Lewis et al. [21]
in 2020, enabling models to generate responses grounded in external information sources, to ensure
extra knowledge on what the LLMs already know without additional training.

Search Relevant ocuments
E [ ——
Information ’\

Documents.

Relevant information for
enhanced context

Query
"Summarize this document”

Generated
response

Prompt k
+
o =0 i3
-
Enhanced context um

Figure 2.1: This high-level overview of RAG consists of two primary stages: retrieval and generation.
In the retrieval stage, a query from the user is used to search an external document index using
dense or sparse vector similarity. The top-k most relevant documents are retrieved and concatenated
with the original prompt to form an augmented input. In the generation stage, this augmented input
is processed by the LLM to generate a response using this external context.
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A diagram of RAG can be seen in which shows the main concept. To begin the setup,
a retriever module is used to process the input query and search a vector that is built from external
documents. The retriever selects the top-k most relevant documents based on the similarity score.
The original prompt is then extended with the retrieved documents and is then passed to the LLM.
This enables it to generate responses based on both internal and external parameters retrieved in
real time.

Using RAG can thus be beneficial to circumvent hallucinations and ensure that the LLM has
the most up-to-date knowledge to answer the query without requiring retraining the entire model or
fine-tuning it.

2.4 Parameter-Efficient Fine-Tuning

One of the drawbacks of FL for LLMs is the massive amounts of weights, which result in high
computation and communication costs, making classical FL impractical [22]. According to Kuang et
al., a full-parameter fine-tuning LIaMA-7B in FL requires 28 Gigabytes of message transfer for one
round of communication between the clients and the server [23]. PEFT enables efficient adaptation
of LLMs to downstream tasks without the need to use and fine-tune all the parameters of LLMs. The
majority of the pre-training parameters are fixed, resulting in a significant reduction of computation
and storage cost [24]. This method only fine-tunes a small subset of additional parameters of
the model. Another similar method to this is Low-Rank Adaptation (LoRA), which freezes the
original model parameters, and only trains the parameters of the new added layers to achieve similar
fine-tuning results [8], |25]. LoRA is specifically efficient when the model has been trained on a large
dataset and must be fine-tuned on a smaller dataset for a specific task [15].

2.5 Gradient Leakage

FL protects the security of the data, which can lead to a secure transmission of models while
protecting the local sensitive data. However, there is still one prominent type of security risks against
an FL architecture that threatens the privacy of the data of clients, namely gradient leakage.

For a long time, it was believed that gradients are safe to be shared, and the training data
could not be leaked when exchanging the parameters. Zhu et al. [26] demonstrated that the private
training data can be obtained from the shared gradients. The greatest risk here is training with a
centralized server where the data is located in one place. Language models process the generated
text in embeddings, when employing LLMs and sharing their raw gradients between servers, original
words from the training data can be uncovered by predicting the original value of the words from the
given context where in each sequence 15% of the words are replaced with a mask token [26]. The
classic variants of reconstructing the gradients are either optimization based on reconstruction or a
reconstruction where the attack reconstructs the input from the parameters using knowledge about
the structure of the model [27].

2.6 Federated Learning Security Defenses
The following sections describe the three security defenses to mitigate the risks of poisoning and

gradient leakage. Together, these methods can form a framework for a secure and robust defense for
LLMs in adversarial setups.
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2.6.1 Differential Privacy

Since there is a possibility of recovering the original data from the parameters of the models, these
weights should be protected from possible eavesdroppers by using differential privacy (DP). This
method ensures that every single document is protected by adding perturbed noise to either the
data or the weights while ensuring that complex computations over the dataset are still feasible |28].
Perturbing the data means that the dataset can still be analyzed and even compute the median,
mode, and mean over it, which does not reveal any information about the individual data points.

Expressed in formulas having DP means that a randomized mechanism M : D — R is essentially
(e, 9)-differentially private for € > 0 and § € [0,1) if for any two dataset which differ at most one
sample D, D' € D and for any subset of outputs R C R it holds that [29]:

P(M(D) € R) < exp(e)P(M(D') € R)+§ (2.1)

Protecting the privacy of the architecture using DP can be done in three different ways: creating a
privacy-preserving document dataset, protecting the client’s privacy during the training, or producing
models that are resistant to model inference and model inversion attacks [10]. DP itself can then also
be divided into two categories based on the location where the noise is added: central differential
privacy (CDP) [30] and local differential privacy (LDP) [31]. CDP ensures that there is noise added
on the server side, and LDP adds its noise to the client side before sending the updates [32]. When
comparing LDP with CDP, CDP is not sufficient to protect the participant training data from
gradient leakage at document-level [33]. LDP is a stronger privacy guarantee because it does not
require the clients to trust the aggregator the correctly apply noise. However, LDP requires more
noise to be added to all clients compared to adding the noise at the server side.

The risk of privacy disclosure caused by adding a single document is controlled in a small and
secure range where the attacker cannot obtain accurate information about the data during the
training process, minimizing the risk of a poisoning attack [13|. This mitigation does not entirely
prevent information leakage when the model’s parameters are known, which suggests a need for
cryptographic protections.

2.6.2 Homomorphic Encryption

Homomorphic encryption (HE) focuses on encrypting the data with the capability for computing
over this data without having access to the secret key [13]. The operations on the ciphertexts are
equal to the plaintext operation results. Before the training of the clients begins, an HE key-pair
is synchronized across all clients through a secure channel [34]. Each client encrypts its parameter
updates using the key and uploads the resulting ciphertext to the server. The server aggregates the
client updates by leveraging the addition property of HE and sends back the result to all clients.
Since each client also holds the corresponding private key, they can decrypt the received updates
and update the local models accordingly. However, HE performs complex cryptographic operations
which are extremely computationally heavy [35]. According to Zhang et al., 80% of the training
iteration time in FL using HE is spent on encryption and decryption [11]. They propose to mitigate
this limitation by using batches of parameters instead of individual weight encryption. The training
process is accelerated while the accuracy loss is minimal.

2.6.3 Secure Aggregation

Secure Aggregation (SA) is a scheme that defends the global model in FL against inversion or
inference attacks, where the server is only allowed to learn the average of the updates of the clients
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[36]. In general, SA generates a mask for the local models using random keys before aggregation
[37]. By using secret sharing, the server reconstructs the private seed of each collected client and
computes the aggregated model [38]. Both DP and HE can be used for securely aggregating. In DP,
noise is added to their local models, while in HE, client encryption is added to the updates [39).

2.7 Access Control and Permissions

Access control policies, that specify which user has access to which information, must be defined in
every database within organizations [40]. Several access control models have been developed over the
years, each specific to different needs and security goals. These methods include Discretionary Access
Control (DAC) [41], where data owners define the access policies for other users, and Mandatory
Access Control (MAC) [42], which enforces access based on various classification or security levels
like top secret, secret, confidential, and unclassified. Flexibility and security are compromised when
using DAC and MAC when scaling these across diverse users in modern collaborative environments.

In contrast, Role-Based Access Control (RBAC) provides a balance between security and scalability.
In RBAC, permissions are assigned to the users roles rather than to individual users [43|. Users can
gain access by being assigned one or more roles. This ensures that users access only what is necessary
for their roles, which makes this structure manageable in complex systems. RBAC assigns access
rights to roles such as viewer, editor, or admin. A practical example of this RBAC enforcement can
be found in Confluence, an enterprise collaboration platform. Confluence divides permission into
global permissions, which apply across the entire page, and space permissions, which control access
to specific content areas |[44]. Each space can be managed independently which users or groups have
access to view, edit, or administer its content and documents.
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Chapter 3

Related Work

The intersection of FL, LLMs, and access control for sensitive data continues to be an emergent
research area. While extensive literature already exists on each of these topics, their integration with
high-security environments remains limited. The key advancements across these three domains is
highlighted in this section.

3.1 Federated LLMs

There have already been some advances in the field of using FL for LLMs; the FATE-LLM architecture
[45] represents a production-ready solution extending the FATE ecosystem. This framework supports
both homogeneous and heterogeneous large language model federation, incorporating parameter-
efficient optimization techniques such as LoRA and P-Tuning-v2 [45]. However, FATE-LLM does not
implement access controls or security requirements for sensitive data. Although the framework is
focused on the common security and privacy risks, it is left with the vulnerability to gradient leakage,
where an inversion attack is possible, a critical gap for classified data.

Federated Instruction Tuning (FedIT) leverages FL to instruction-tune LLMs, improving their
generalizability while maintaining data privacy [15|. Zhang et al.’s approach supports fine-tuning
of client queries by using instruction-response modules. The evaluations are done by GPT-4 and
show that their method exceeds centralized training when using limited local data. Zhang et al. [46]
further refined FedIT, which has an auto-evaluation mechanism and is trained against data extraction
attacks. Another federated LLM architecture was developed by Kuang et al. [23], which offers an
end-to-end FL fine-tuning mechanism that also uses PEFT with extensive evaluation methods.

3.2 Federated Learning for Sensitive Data

Without compromising privacy or requiring centralized data storage, FL provides an approach for
training models on sensitive data. This is especially crucial in the following domains where data
confidentiality is crucial due to regulations such as the GDPR [47].

3.2.1 Healthcare

Extensive research has already been conducted on the application of federated learning to clinical data.
Clinical-domain LLMs, such as Clinical BERT, Med-PaLM, Almanac, and Meditron, are examples of
these models that are essential for question-answering tasks within healthcare [48H52]. However, these
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models often assume a central medical knowledge base, which is not always realistic in distributed
healthcare settings [49] |53]. The viability of using FL in healthcare is seen in research like EXAM,
a model trained across 20 international features to predict the requirement of oxygen for COVID
patients, which achieved a high AUC score and improved the generalizability when compared to
other centralized models [54]. Using sensitive patient data, other federated systems have been created
to classify patients with melanoma or tuberculosis and predict ICU mortality [55) 56].

Teo et al. [57] conducted a review of the real-life applications of FL in the healthcare sector
by studying over 600 research papers. The results revealed that most of the papers are still a
proof-of-concept, but FL is already deployed across various domains such as radiology and internal
medicine [57]. To address the challenge of using data fragmented from different health institutions,
which are under strict privacy regulations, Jiang et al. [49] proposed MediRAG, which is distributed
across multiple hospital servers. MediRAG uses authentication and policy-based access enforcement
to ensure secure query routing. It also performs retrieval and vectorization on the patients’ datasets,
and only shares carefully filtered results and embeddings with a central LLM. This framework already
takes the privacy requirements of the sensitive data of the patients into account.

By combining federated retrieval protocols with access control mechanisms and optional encryption,
the clinical federated LLMs facilitate distributed question-answering without compromising the
patients’ privacy. This caused a shift in using centralized corpora, which was the basis of a fully
regulated FL-RAG system. Such systems should be GDPR compliant before they can be used across
hospitals for research without raw data sharing [47].

3.2.2 Industrial Engineering

Since data in the industrial engineering area is not available directly due to some constraints of laws
and regulations, they often opt to use federated learning [58]. The data fragmentation here happens
across supply chains, manufacturing ecosystems, and infrastructure networks. Hu et al. [59] developed
Federated Region Learning, which integrates distributed sensor data from air or water monitors across
different urban environments. When the models were trained locally on geographically partitioned
data and then aggregated on region-specific features, the decentralized architecture achieved an
increase of 23% in accuracy when predicting pollution compared to centralized alternatives.

3.3 Access Control in Federated Systems

Access control is an essential component of federated systems, as it determines how data and
model updates are shared across participants without violating privacy or security policies. From
the traditional Role-Based Access Control (RBAC) to the more adaptable Attribute-Based Access
Control (ABAC) and Policy-Based Access Control (PBAC), existing research has examined a variety
of approaches [60, |61]. PBAC allows policies to be formally defined and implemented, which has
been proven useful in domains such as healthcare [53].

Particularly in federated learning, access control mechanisms are used to regulate permissions for
sharing gradients and contributing model updates in addition to controlling data access. Prior work
has highlighted the challenge of enforcing fine-grained control without compromising performance
or usability. For example, healthcare-focused federated frameworks often restrict access to only
subsets of Electronic Health Records, ensuring compliance with legal and ethical standards while
still enabling federated and collaborative model training |62, [63].
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Chapter 4

Methodology

The following chapter presents the methodology in which the approach is discussed that combines
multiple techniques to support secure and permission-aware training and inference across distributed
clients without exposing raw data. The system design uses PEFT, specifically LoRA, and combines
this with privacy-preserving mechanisms such as DP and HE. The sections that follows, describes
the threat model considered, the details of the proposed framework, privacy mitigations, and the
implementation of the user interface.

4.1 Threat Model

The overall threat model consists of two parts: threat model during the training phase and the
inference phase. In the context of the training phase, privacy refers to the presence of malicious clients
and an adversary that seeks to learn the weights. The other threat model, inference phase, at the
answering side, where we do not want the model to answer anything about other clients’ documents
for which they do not have permission. Not only is the overall threat model of this architecture
considered, but also the general threat model of FL needs to be considered.

The server or aggregator is honest-but-curious, which is a common threat model used in the
existing FL architecture [64, 65]. Adversaries attempt to extract private data files from other clients
while following the protocol correctly. In this protocol, both the client’s data and the cloud’s model
parameters are kept private under this threat model. The server is not required to be a trusted party,
and the privacy of the data is preserved since the client’s secret is not known. As the parameters are
decrypted, the server cannot learn anything about the client’s data. When the clients have malicious
intent, they may deviate from honest clients by sending random updates, replay updates, or removing
updates when communicating with the server [66]. Under this assumption of an honest majority, the
parameters appear random after decryption. The encrypted parameters provide indistinguishability
under a chosen plaintext attack (IND-CPA), meaning the server cannot learn anything from what it
observes, thereby guaranteeing the privacy of the client’s data and the global model [67].

Adversaries can attempt to obfuscate the process by attacking from within or from outside. Overall,
insider attacks are stronger than outsider attacks [68]. Insider threats are difficult to discriminate
from benign activity within the organization or architecture [69]. In the proposed architecture (see
, insider threats can take the form of a malicious server or client. Outsider attacks may
include eavesdroppers on the communication channels who use the weights to infer information about
the training data. Zhu et al. [26] have already demonstrated that training data can be reconstructed
from the weights for image classification and language modeling tasks, thereby proving that sharing
parameters can leak private training data. Another threat to the FL architecture is poisoning attacks,
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where we divide this attack into random and targeted attacks, where random poisoning attacks have
the goal of reducing the accuracy of the FL model, and the targeted poisoning attacks aim to have
the FL model classify the target label set by the adversary .

The primary potential threats are outlined below and illustrated in each labeled
accordingly. These represent the most commonly cited threats in the literature . While
additional threats exist, their inclusion falls outside the scope of this thesis.

e External Eavesdropper: An adversary can eavesdrop on the weights by using the communi-
cation channels of the clients and the server. These weights can be used to extract information
about the documents. An adversary can reconstruct the original training data and thereby the
classified documents by using the weights.

e Malicious Client: Malicious clients can interfere with the benign model updates by poisoning
the dataset, replaying the model updates, or removing updates. The ultimate goal of these
clients is to corrupt the global model, with the consequence that the model’s accuracy degrades,
affecting the server’s availability and integrity.

e Curious Server: A curious server may reveal training samples of a specific target when it
receives the model updates, while it pretends to be a benign server. Furthermore, there is a
possibility that the server can recover the original training data without using prior knowledge
of these files . Recovering the data files requires a corresponding decoder that reveals the
pattern of the encoded patterns in the model’s parameters.
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Figure 4.1: Threat model illustrating both internal and external threats, including a curious central
server, an external eavesdropper, and a malicious client.

The threat model of using FL for LLMs in the framework, as mentioned above, is summarized as
follows:
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e Adversary’s Capabilities: We assume that an adversary can eavesdrop on the weights by
sniffing the network, making them an external eavesdropper. Additionally, a malicious client
can interfere with the updates of the model by poisoning the dataset, thereby affecting the
global model. Furthermore, a curious server can also disclose the parameters holding the
gradients from the training data of the clients.

e Adversary’s Knowledge: The adversary has no prior knowledge of the dataset or the model’s
parameters, nor does the adversary know the model’s architecture, parameters, or training
algorithm. At inference time, the adversary is allowed to query the model, as any client, to
exploit possible backdoors.

e Adversary’s Goal: The goal of an adversary in this context is to obtain classified data by
using their knowledge of the system and their multiple capabilities in the training and inference
phase to exploit the system. During training, the adversary can exploit the system by posing as
the external eavesdropper, malicious client or curious server, leading to either gradient leakage
or poisoning the global model.

4.2 Proposed Architecture

The global federated architecture is sketched in where no privacy or security aspects were
taken into account. As each FL scenario starts, the weights from the clients are sent to the server for
aggregation. After aggregation, the updates are sent back to the users, where the weights are loaded
into their local model. In most cases, users have one or more roles. The allocation to these roles can
be stored in either Confluence-like roles or directory services, such as Active Directory. Users have
access to various spaces, each containing documents. Each user can have multiple roles and access
numerous spaces. The security or access levels should be accessible from the programming interface.
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Figure 4.2: The proposed architecture with its clients having access to their local document store
and a server which aggregates the weights and sends back the updates. Both the local and global
models use DeepSeek.

4.2.1 DeepSeek

DeepSeek was selected as both the global and local models. In areas like writing, factual QA, and
self-cognition, DeepSeek-R1 uses a multi-stage training pipeline and a small amount of cold-start
data before fine-tuning on supervised data. Its ability to perform iterative token-based reasoning
enables higher accuracy, particularly in tasks that require step-by-step analysis [72]. Setting the
temperature between the optimal values of 0.6 and 0.8, DeepSeek-R1 is proficient in a various tasks,
such as creative writing, general question answering, editing, summarizing, and more. Also, it
demonstrates outstanding performance on tasks requiring long-context understanding, substantially
outperforming DeepSeek-V3 on long-context benchmarks [73]. The model is encouraged through
reinforcement learning (RL) to put its thinking process between “think” tags. According to the
procedure of RL, a reward according to accuracy is given to the outcome [74]. The model aims to
achieve robust reasoning capabilities without requiring any supervised fine-tuning data. This is a
noteworthy achievement, as it underscores the model’s ability to learn and generalize effectively
through RL alone. DeepSeek allocates more thinking time to a problem by reevaluating its initial
approach.

4.3 Baseline Federated LLM

In the baseline federated LLM framework is sketched. It serves as an insecure baseline
where the user can query about the documents without taking any permissions into account. The
documents still have confidential classifications, but the user can access them using RAG. The RAG
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retriever also performs in a sense FL after retrieving the top-k documents. These relevant documents
are used to extend the prompt to generate the LLM’s response.

This framework serves as the baseline for enhancing the security of FL. on LLMs. Modifying this
insecure framework with security and permission control measures will enable us to implement the
final secure architecture. The following describes a high-level overview of the baseline architecture:

1.

The user queries the system, which is related to the classified documents. The client is already
logged into the system; however, there are no additional authentication mechanisms in place to
verify the user’s identity.

. The query is passed from the interface to the embeddings of the spaces. The query is passed to

all spaces, including those with classified documents, because there are no security authorization
mechanisms in place. The query will reach all decentralized spaces. There is no additional
federation within the spaces. There are no security authorization mechanisms, so the query
will reach all spaces regardless of user role attributes.

. The top-k-relevant documents to the query are retrieved by embedding similarity across all

documents within the spaces and are aggregated back to the RAG. There is no encryption
or access control, so documents can leak or expose confidential information to unauthorized
clients.

. The documents are appended as context to the client’s query and sent to the LLM for answer

generation.

. In the LLM’s generation step, the LLM constructs a response from the query and the context,

also showing the source document for enhancing interpretability.
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Figure 4.3: Baseline federated system architecture where the system allows the user to query across
all spaces, including those containing classified data, without any authentication or authorization
controls. Queries are processed without security controls, and relevant documents are retrieved based
on their similarity to the query. As a result of this shortcoming in security measures, classified
information may be exposed to unauthorized users. The retrieved documents serve as context for the
LLM to generate responses, which also return the source documents.
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4.4 Secure Federated LLM

Building on the baseline architecture described in the following section sketches the
secure federated LLM framework that integrates user permission enforcement and FL-related security
mitigations. The user is already assumed to be authenticated and has specific Confluence-like
permissions (see . Access control is implemented to ensure control of user attribute-based
access to classified documents during the retrieval of the decentralized spaces.

The following description is similar to the baseline, but in bold are the added security measure-
ments to the process:

1.

The user queries the system, which is related to the classified documents. The client is already
logged into the system and the user’s identity is authenticated when logging into
Confluence.

. The query is passed from the interface to the embeddings of the spaces. The query is passed to

only the spaces the user has access to. The query will reach the decentralized spaces
which the user has access to. The query will only reach the spaces based on the
role attributes of the client.

. The top-k-relevant documents to the query are retrieved by embedding similarity across all

documents the user has access to within the spaces and are aggregated back to the RAG.
There is HE and access control, so no documents can leak or expose confidential
information to the client, which is not authorized to view/access this data.

. The documents are appended as context to the client’s query and sent to the federated LLM,

which is instruction-tuned, for answer generation.

. In the LLM’s generation step, the LLM constructs a response from the query and the context,

also showing the source document for enhancing interpretability.
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Figure 4.4: Secure federated system architecture where the system allows the user to query across
spaces to which they have access. Queries are processed with security controls, and relevant documents
are retrieved based on their similarity to the query. The retrieved documents serve as context for the
LLM to generate responses, which also return the source documents.

4.4.1 Framework Architecture

The original framework is maintained for the proposed secure federated LLM architecture, as it serves
as a building block that requires some additions to effectively become a secure federated LLM. Before
querying, the clients are already authenticated when they get access to Confluence. Inherently, they
have their own permissions, access to specific spaces, and, optionally, permissions based on their
roles.

To address the challenges related to data privacy, computational overhead, and scalability, Secure
Federated LLM integrates HE for secure computations and DP for adding noise to the gradients (see
for the implementation). Furthermore, LoRA is implemented to reduce the number of
trainable parameters when fine-tuning the LLM. FedITE| was used to improve the instruction-following
capabilities of the secure LLM. FedIT already enables clients to fine-tune their local model using
instruction-response pairs from their private datasets. This ensures that the model learns to generate
responses that align with the user’s custom instructions. Additionally, this approach maintains
privacy by decentralizing the training data and securing the client’s data.

1The code is available at https://github.com/Jayzhang42/FederatedGPT-Shepherd
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As described in the overview in the server initially distributes the global model to the
clients, where each client loads the weights into their local model and fine-tunes it on their private
dataset using LoRA. During the training phase, the weights are subjected to additive noise, which
prevents malicious clients from poisoning the weights. Then, to ensure secure communication, the
client encrypts the parameters using the CKKS encryption scheme by TenSEAL. This encryption is
done by encrypting their weights (w;) by using the generated encryption context C":

¢; = Enc(w;,C) forie N (4.1)

Using this encryption method ensures a safe transfer between the client and server. Additionally,
the weights are safeguarded during the aggregation process at the server side without decrypting
the gradients, as HE enables the performance of computations on the vectors. The parameters are
aggregated as:

N
1
Cags = D —c forieN (4.2)

i=1

where c,gq are the aggregated encrypted weights, n; the number participating clients, and ¢; the

encrypted weights computed in

4.4.2 Privacy Mitigations

To enable security in the proposed framework, the following methods are implemented to mitigate

potential threats as outlined in

Homomorphic Encryption

In this framework, HE is used to encrypt LoRA parameter updates before they are transmitted to
the server. However, employing HE with tensors presents two challenges: efficiently encoding tensors
before encryption and limited support for complex operations after encryption. Microsoft SEAL
has an answer for supporting encrypted addition and multiplication, but is does not handle more
advanced operations. A tensor can be encoded using a single ciphertext before encryption, ensuring
it is optimized for both computability and memory usage. TenSEAL extends this functionality by
providing the CKKSVector, which can hold N/2 real values and supports addition and multiplication
operationes allowed by SEAL. Additionally, TenSEAL supports power and square operations using
an optimal circuit, thereby minimizing the depth required for multiplication.

Matrix operations, which are used in the FL training process, benefit from these optimizations.
Dot products can be efficiently computed through multiple vector-to-matrix multiplications, which is
based on the algorithm by Halevi & Shoup [75]. Together, these techniques enable privacy-preserving
computation of LoRA updates while maintaining practical efficiency in a federated learning setting.

Differential Privacy

To also strengthen the privacy during the client’s training, we incorporate DP, which modifies the
gradients of the LoRA parameters at each training step at the client side. Adding the noise at the
client side, makes it local DP (LDP). After the optimizer computes the gradients, using DP, the
overall magnitude of the gradients is computed first. If this magnitude exceeds the preset threshold,
the gradients are scaled down to ensure that they do not exceed the maximum norm; this limits

the influence that a single data sample can have on the model updates (see [Equation 2.6.1]). This
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clipping involves drawing noise from a Gaussian distribution, which is added to the gradients. This
noise is scaled by a noise multiplier parameter, which controls the level of privacy protection by
hiding the exact number of samples included:

G- — TN (0,0°C?1) (4.3)
min (1, 7|‘w”2+6>
Where:
e w are the original weights,
e ¢ is a small positive quantity,

lwlle = />, w? is the Ly norm of the weights,

C is the clipping threshold (maximum gradient norm),

o is the noise multiplier controlling the noise scale,

N (0,02C?I) represents Gaussian noise with zero mean and covariance matrix o2C?1I,

w are the resulting weights after clipping and noise addition.

4.5 User Interface

To ensure interaction with the local LLM and support manual inspection workflows during the testing
phase, a user interface was developed using Gradio (see . This interface enables users to
easily input questions, view responses from the model, and inspect the full documents retrieved for
question answering. The accessibility of the Gradio interface makes it convenient for both technical
and non-technical users, as several metrics can be adjusted for responding, such as temperature,
top-p, top-k, and number of beams. This UI played a key role in streamlining the inspection and
debugging process throughout development and experimentation. As shown in after
entering a question, the interface returns both the generated answer and the retrieved document. On
the right side, users can view not only the content of the retrieved document but also its associated
metadata, such as the author, title, and creation date. This design ensures that users can verify the
generated answers directly from the source.
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Chapter 5

Experimental Setup

This section describes the implementation of the overall secure federated LLM, including document
processing and the retrieval pipeline used for question-answering over classified information. The
implementation was done in Python and utilizes libraries from the LangChain framework, as well as
Transformers, FAISS, TenSEAL, and Gradio for the user interface (see . Concluding this
section, an overview of the experiments will be provided, of which the results will be discussed in the
next chapter.

5.1 Model and Dataset

5.1.1 Model Selection

In the baseline and secure framework (see [section 4.3 and [section 4.4)), the model can be interchanged
with any chosen model. DeepSeek-R1-Distill-Qwen—1.5B was selected as the global and local
model. The temperature, top-p, top-k, and number of beams parameters can be customized based
on client preferences; however, for testing purposes, the following values were used: temperature
= 0.3, top-p = 0.9, top-k = 50, and number of beams = 1. Further assessment was conducted
using a maximum of 2,000 new tokens to accommodate DeepSeek’s reasoning process and ensure a
comprehensive response.

The retrieval embedding model BAAI /bge-small-en-vl.5 [76] was used to retrieve the top-k
documents from the spaces. Using this embedding model, we observed that relevant documents were
retrieved, where, based on these vectors, the embeddings returned the correct documents related to
the query.

5.1.2 Dataset

The paper by Zou et al. developed with the help of human annotators and synthetic questions
DOCBENCH, a benchmark for evaluating LLMs that need to process documents [77]. DOCBENCH
consists of 229 real-world PDF documents and 1,102 questions across five domains: Academia,
Finance, Government, Laws, and News (see [Table 5.1)). It features four question types, including
text-only and multi-modal queries. For instance, in the Academia domain, questions may include
“Why does the model not perform as well in German compared to Spanish and Dutch?”, in Finance,
“By how much did the number of Erica users increase from 2018 to 201927, in Government, “What
1s the primary focus of Bureau Objective 3.47”, in Laws, “How many times does the report mention
"scientific ethics”?”, and in News, “Is the article about Hurricane Ian’s impact in Florida written by
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multiple authors?”. Multi-modal questions may require combining text information with tables or
figures from the PDFs, such as “According to Figure 4, does the training speed of NCREF++ continue
to increase after a batch size of 1009”. The distribution across the different domains and question

types is plotted in

Category | #Questions Q-Tokens (K) | #Docs #Pages Size (KB) D-Tokens (K)
Aca. 303 16.8 49 11 847 11.1
Fin. 288 16.8 40 192 6,594 149.4
Gov. 148 14.1 44 69 2,183 36.1
Laws 191 154 46 58 969 32.3
News 172 13.5 50 1 3,095 2.9
Total/Avg. 1,102 15.7 229 66 2,738 46.4

Table 5.1: Statistics per category: number of questions, question tokens (in thousands), number of
documents, pages, document size in KB, and document tokens (in thousands).

Dataset distribution based on different classification criteria
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Figure 5.1: Distribution of the DOCBENCH data.

Only one dataset and a single pre-trained LLM were used across all experiments, which is sufficient
within the scope of this study. The primary research objective is to explore the feasibility and security
of applying FL for fine-tuning LLMs on sensitive data, rather than benchmarking model performance
across different tasks or domains. This ensures that the observed results can directly be attributed to
the methods being evaluated rather than variability introduced by multiple models or heterogeneous
data sources. The DOCBENCH dataset structure is appropriate for evaluating the effectiveness of
retrieval, policy enforcement, and local model reasoning under permission constraints. DeepSeek
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is representative of several open-source LLMs that are large enough to demonstrate reasoning and
answering capabilities but small enough to be deployed in resource-constrained offline environments.
Introducing multiple datasets or models would significantly increase computational complexity and
experimental variance, which would limit the effects of the security on the proposed framework.

5.1.3 System Specifications

The experiments are conducted using the following hardware configuration: an Intel Xeon 4214 CPU,
an NVIDIA RTX 2080 Ti GPU with 11 GB of VRAM, and 16 GB of system RAM. The operating
system is Ubuntu 22.04.1 running with the newest kernel. Additionally, Google Colab was used for
faster and more flexible testing using Ollama (also see section [5.4.1)).

5.2 Data Pre-processing

As the dataset consists of multiple PDF files with questions in JSON format, some pre-processing
is applied to generate the training and test data. A custom dataset is created from these PDF
files, where a random space index is assigned to each document and a corresponding question for
instruction tuning. Using the PyMuPDF library, the content and metadata can be extracted from
the files and added to the custom dataset. A data sample in the dataset consists of a question, the
document context, the ground truth, the space key index, and metadata.

5.2.1 Test Set Selection

A distinct set of questions was reserved for testing, which ensures that there was no overlap between
the questions used for fine-tuning each client’s local LLM. For each of the space key indices, five
questions were chosen (see also . A summary is given of the selected questions after random
sampling. A manual inspection is done after sampling, as questions such as ”Who is the last author
of the paper?” and ”How many words are there in total in the paper?” are impractical because the
model cannot link such questions to an exact document. It is not clear which paper is meant in
these questions, as the model will answer with the relevant paper or document; otherwise, the model
cannot generate a reliable answer. These questions, which query the model for knowledge about
the metadata of the documents, were replaced with more broadly answerable questions. Ultimately,
the final test set contains five questions for each space key, ensuring a balanced combination of
randomness and practical answerability.

5.3 Federated Learning Setup

The following section outlines how permission enforcement is implemented in the federated setup,
including the structure and roles defined by global and space-specific permissions.

5.3.1 Permission Enforcement

The retrieval framework follows an RBAC model to enforce permissions during document retrieval.
Furthermore, permissions are divided into two categories: global and space permissions [44]. The
first are site-wide permissions, which can be granted to a user or a group, and are assigned by an
administrator. These permissions encompass the types that govern whether a user can log in or
create a space. However, they do not interact with space permissions or page restrictions.
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Every space has its own independent set of permissions, managed by the space-level RBAC
permission rules. This set of permissions can grant or revoke the permissions described in
Revoking permissions can be done on a per-user or per-group basis, ensuring that document retrieval
respects the assigned roles. From these categories, it becomes clear that permissions are not granted
directly to the individual clients but rather assigned based on their roles or groups, which is the core
principle of RBAC.

Permission Name

Viewspace Permission

Remove Own Content Permission
Create/Edit Page Permission
Remove Page Permission

Edit Blog Permission

Remove Blog Permission

Create Attachment Permission
Remove Attachment Permission
Comment Permission

Remove Comment Permission
Set Page Permissions Permission
Remove Mail Permission

Export Space Permission
Administer Space Permission

Table 5.2: Space permissions based on Confluence.

Page restrictions operate in addition to the RBAC hierarchy. Pages are open for viewing and
editing by default; however, it is possible to restrict either viewing or editing to specific users or
groups. Every page is part of a space, and space permissions allow the space admin to revoke
permissions to view or edit content for the whole space.

Confluence Implementation

The goal is to replicate Confluence’s space-level permission model, where users can view, edit,
comment, export, and have admin rights, and which supports viewing and cloning these permis-
sions across users, based on the Java approach in |78]. This repository provides a REST-based
interface for managing space-level user permissions for Confluence. The architecture enables cloning
or replicating permissions to another user; the system offers a PUT endpoint that accepts the
permissions data structure and applies it to the selected target user. Using different managers,
such as RestUserPermissionManager, UserPermissionsResource, UserManager, and
SpaceManager, the permissions for the spaces can be managed to ultimately obtain the permissions
for the users. Leveraging Confluence’s widespread adoption ensures that this model aligns with
real-world collaborative environments and provides a practical framework for managing permissions
within an enterprise.
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5.3.2 Clients

Documents

! oy

Usermame

Q' decpseck Client ID

List of permissions
Local model
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Figure 5.2: Visual representation of the client where each client has access to one or more spaces,
which have documents in them. The client has their local LLM, username, client ID, and list of
permissions per space.

Each client maintains:

e A local copy of the LLM (DeepSeek-R1), downloaded from a central global model server using
PEFT.

e A personalized subset of documents filtered according to the client’s specific permissions.

e A user profile consisting of a username, accessible documents, and a list of permissions, such as
a Confluence space.

The client can ask questions to the local model, which is used for local model updates only, and
the global model is utilized for sending these updates after aggregation. This ensures privacy, but
the client only gets answers based on its subset of the documents. This document store on each
device is indexed in a local vector space using FAISS to enable semantic retrieval when querying.
When the client issues a question, the client embeds the query locally and retrieves the top-k relevant
documents from its index. These results are concatenated to the prompt template and passed to the
LLM, which generates an answer grounded only on the user’s authorized documents. Before uploading
the parameters to the global model, each client encrypts its updates using TenSEAL’s CKKS scheme.
The CKKS scheme was configured with a polynomial modulus degree of 32768 and coefficient modulus
sizes of [60, 40, 40, 60], which determines the precision and security of computations on encrypted
data using a chain of modulus primes . This setup ensured the secure aggregation of model
updates, sharing only the public key with the server while maintaining the confidentiality of the
client’s private data. The weights of the local model are then shared with the global model, and
updates are sent to all local models, allowing each client to benefit from the globally improved model
while maintaining its data privacy. Clients can decrypt the updates after aggregation and integrate
them into their local models to use for inference.

Each client has a local state, which consists of its username, the set of indexed documents filtered
by space-level permissions, and a local DeepSeek instance that is fine-tuned on their instructions.
summarizes the mock users, their spaces, and their assigned roles.
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ID | Name | Spaces Is Admin | Permissions/Role
1 admin | [0, 1] Yes admin
2 userl | [1, 2] No editor
3 user2 | [2] No viewer
4 user3 | [3] Yes editor
5 userd | [0] No viewer
6 userb | [1, 3] No editor
7 user6 | [2] No editor
8 user? | [0, 3] Yes viewer
9 user8 | [1] No viewer
10 | user9 | [3] No editor
11 | userl0 | [0, 1, 2, 3] Yes admin

Table 5.3: Client Configuration in the Federated Learning Setup, Including Role Assignments,
Accessible Spaces, and Admin Status

5.3.3 Global Server

The server starts by distributing the global model to the selected clients. Each client loads the global
model into their local model, from which the fine-tuning process can begin. After training on the
private local dataset of the clients, encrypted parameters are sent back to the server, where the
weights are aggregated. The server only has access to the number of clients; it has no additional
information.

Number of Aggregation
clients method FedAvg

e A

Server

Figure 5.3: Global server

5.3.4 Training Process

In the experimental setup, training occurs in a series of communication rounds, where each round
mimics the real-world communication between the server and clients. At the start of each round, a
random subset of clients is chosen to participate in the training process. After loading the global
model, the fine-tuning or training process can begin with unseen documents, incorporating new
instructions from the client. Before training, the data were divided into training and test sets, with
a ratio of 70%/30%. To reduce computational and communication burdens, PEFT techniques are
employed, specifically LoRA with rank r = 16 and alpha o = 16. This configuration optimized
communication and computation. The fine-tuning is performed using Adam optimizer with a learning
rate of le — 2 for 1 epoch. Clients train with a batch size of 2 and retrieve relevant documents
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using the FAISS index. Algorithm [I| represents the secure fine-tuning process, including the training
process.

Algorithm 1 Federated Secure LLM Training Procedure

1: Input: N: Total number of clients, R: Communication rounds, D: Client datasets, mg: Initial
global model, C: CKKS encryption context

2: Output: Final model weights mp, training loss history £

3: Initialize global model weights mg

4: Initialize encryption context C' (CKKS scheme)

5: for each round r =1 to R do

6: Randomly select a subset of clients S, C N

7: Initialize server with current global model m,.

8: for each client 7 € S, do

9: Download and set global model w,. locally
10: Prepare client-specific dataset D; based on access permissions
11: Tokenize and preprocess local data
12: Initialize training configuration with chosen hyperparameters
13: Train the local model for a fixed number of epochs

14: Record training loss ¢} for analysis

15: Encrypt the updated local model weights using context C'

16: Save encrypted updates for server aggregation

17: end for

18: Perform secure aggregation of encrypted weights across selected clients
19: Decrypt the aggregated model using the private key
20: Update global model weights: w,11 < w, + Aw,
21: Store updated model and training loss
22: end for

23: return Final model weights m g, training loss history £

5.4 Experiments

The experiments should assess the accuracy and security of the proposed FL framework for permission
handling.

5.4.1 Evaluation Metrics
IXN Scores

To evaluate retrieval security, we focus on whether the framework enforces access control during
retrieval by conducting experiments in a controlled environment with setup clients and their cor-
responding permissions to several spaces. These retrieved documents will be compared against
the baseline (see 7 which retrieves the top-k documents without enforcing any retrieval
permissions. To measure information loss due to access restrictions, the IXN score is used for each
user u;:

|Dfi 0 Dfslw
IXN,, = ———
' | DT

(5.1)
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where D are the documents, fi baseline federated learning and fs secure federated learning [53].
A low IXN score indicates more restrictive access, while higher scores indicate more permissive access
privileges. Users with more permitted spaces are expected to achieve a higher IXN score.

Response Quality

ROUGE-1, ROUGE-L, and BLEU are employed to evaluate the generated response quality on
question and answer tasks using NLP. Since the LLM generation step is identical between both the
baseline and secure variants of FL, significant deviations in these scores indicate that access-controlled
retrieval is altering the quality of the response. The ROUGE metric can be considered a measure
of how much of the baseline response content is also present in the target response. ROUGE-1
measures the number of matching n-grams between the model-generated text and ground truth
answer, while ROUGE-L captures the length of the longest common subsequence shared between
texts [81]. ROUGE-1 computes the portion of n-grams, in this case unigrams, present in the ground

truth with:
ngml cs Countyaten (gramsy)

E-1=
ROUG > gram, es Count(gramy)

(5.2)

where S is the set of retrieved documents.

On the other hand, BLEU estimates the precision by counting the n-grams in the generated
answer that overlap with the ground truth [82]. The metric has a range from 0 to 1, where 1 means
an almost identical response compared to the ground truth. However, almost similar answers will
receive a score lower than one unless they are identical to the ground truth. This also results in the
human answer not necessarily scoring 1. The overall BLEU score consists of a brevity penalty BP,
which penalizes the answers with perfect precision but without meaning;:

1 ife>r
BP = 5.3
{e(l_r/c) ife<r (5:3)

Then the overall BLEU score will be computed as:

N
BLEU = BP - exp (Z wy, log pn> (5.4)

n=1

These scores are NLP metrics that match words between the generated LLM answer and the
ground truth, rather than evaluating the answers based on their semantic content. Therefore, the
following metric offers a method for evaluating semantics as well.

RAGAS

RAGAS is suited for reference-free evaluation, as it offers several distinct, LLM-driven metrics that
assess different characteristics of RAG without the need for golden documents or ground-truth labels.
It utilizes an LLM judge, where calls to the judge are made to evaluate the model’s output.

While DeepSeek is the base model for this FL setup, it was not used as the evaluation judge since
RAGAS requires a LLM capable of providing consistent reference-free judgements. 1lama3:8b
offers a strong balance of generation quality and efficiency, which is used as the LLM for evaluation
running locally using the Ollama server. As we are interested in assessing the federated LLMs along
the components of retrieval relevancy to the query and generation response quality, the following
RAGAS metrics were selected [83]:
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1. Context Precision: Context precision measures the proportion of relevant chunks in the
retrieved documents. It will reveal whether the LLM is returning unnecessary noise or redundant
data at the retrieval stage. It is computed as the mean of the precision for each chunk in the
context, which is the ratio of the number of relevant chunks to the total number of chunks:

Zszl (Precision@Qk - vy,)

Context Precision@QK =
Total number of relevant items in the top K results

(5.5)

where

true positives@k
Precision@k = D

5.6
(true positives@k+false positives@k) (56)

and K is the total number of chunks and v; € {0,1} is the indicator for relevance at rank
k [84]. If the precision is low, the model is retrieving irrelevant documents. It is crucial to
minimize the retrieval of irrelevant data to prevent privacy leakage or security violations.

2. Answer Relevancy: Answer relevancy quantifies how closely the generated answer aligns
semantically with the original query. When building these systems for clients, the answers must
be relevant to the client’s query. Answers that are incomplete or contain unnecessary information
will receive a lower score, whereas answers with better relevance will get higher scores. The
judge LLM generates multiple synthetic questions from the answer, then each generated question
embedding is compared using cosine similarity to the original query embedding:

N
1
Answer Relevancy = N Z cos(Ey,, Eq) (5.7)
i=1

where E,, is the embedding of the generated question i. E; is the embedding of the original
question. N is the number of generated questions [85].

3. Faithfulness: Faithfulness assesses whether the claims made in the generated response can
be found in the retrieved documents. Evaluating whether the made claim is in the answer is
supported by the retrieved document, and will detect if there is any hallucination present in
the LLM-generated response. When generating answers that contain sensitive information,
there must be a guarantee that the outputs are based on these sensitive documents. The judge
LLM extracts statements from the model’s answer and verifies each one against. It has a range
of 0 to 1, where higher scores indicate better consistency. The score is the fraction of verified
claims [86]:

. Number of claims in the response supported by the retrieved context
Faithfulness score =

Total number of claims in the response
(5.8)

4. Context Recall: The last metric, context recall, measures how many of the documents were
successfully retrieved [87]. High context recall means that the retrieved documents contain
most or all of the useful information. Using the client’s input, the reference, and the retrieved
context, the value computed ranges between 0 and 1. It measures whether the model retrieved
enough relevant information to fully answer the question. This metric is not enough to evaluate
retrieval on its own, so it needs to be combined with precision and faithfulness. The formula
for context recall uses the number of claims or facts:

Number of claims in the reference supported by the retrieved context
Context Recall =

Total number of claims in the reference (5.9)

where the reference is the ground truth answer from the dataset.
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Chapter 6

Results

The federated secure LLM will be evaluated based on the quality of generated responses and
the security guarantees provided during the retrieval step. The following two frameworks will be
considered (see [section 4.3| and [section 4.4)):

e Insecure federated LLM (baseline): standard query answering without permission enforce-
ment. There is retrieval across all decentralized spaces containing classified documents.

e Secure federated LLM: federated query answering with permission enforcement and extra
security measures enforced during the FL process. Retrieval results in an authentication process,
ensuring the secure retrieval of the top documents among permitted documents.

The primary difference between the two frameworks is that the secure LLM utilizes authorization
filters to enforce access control. To adequately measure the performance of both architectures, the
security access control mechanism is tested to detect any leaking information and compare this with
the baseline.

6.1 Training Results

During the training of each communication round, the average loss for 10 epochs of each client was
saved and is plotted in The loss starts high with an average of 1.35 and reaches a loss of
0.37 after 10 rounds of FL. The results did not converged after these 10 rounds. In the
number of rounds in which the clients participated is displayed. For each round of communication
they participated in, the training loss is visualized in Not every client participated in the
same number of rounds, thereby reflecting the irregular participation patterns that are typical in a
real-world FL environment.
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Number of Rounds

Name Participated

admin
user 1
user 2
user 3
user 4
user 5
user 6
user 7
user 8
user 9
user 10

WU WHFE RN WW

Table 6.1: Number of communication rounds each client participated in during the FL process.
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Figure 6.1: Average training loss over 10 rounds in the proposed federated learning setup. The plot
shows the average training loss across all participating clients per round.
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Client-wise Training Loss over Rounds

Client Name
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Figure 6.2: Training loss progression for each individual client, highlighting variations in learning
dynamics. Only the rounds where the client participated in has a data point, the line is connecting
the participating rounds for each client.

6.2 IXN score

To evaluate the effectiveness of the proposed RBAC-based retrieval system, which is based on
permissions from Confluence, the IXN scores are computed for the chosen clients, each assigned
access to spaces defined as in The IXN score is defined as the intersection between the top
10 documents of the secure and insecure RAG embeddings. These results are presented in
For each user, the average score is computed, where lower scores should indicate that access control
policies successfully restricted user access to one or more top documents retrieved by the baseline
framework . The results vary significantly across user roles, with users 2, 3, 6, and 9 achieving the
highest average IXN score of 0.22 compared to the baseline. This high IXN score indicates that the
retrieved documents from these users are for 22% similar to the documents retrieved by the insecure
baseline. In contrast, users 4, 7, and 10, as well as the admin, demonstrate more restricted document
access, with an average of 0.12. These lower scores indicate less overlap with the retrieved baseline
documents. Users 1, 5, and 8 retrieved a score of 0.19 which is lower than the highest scoring users.
Overall are the scores low, which was not hypothesized as some of the documents should have been
retrieved according to the permission levels of the clients. The reason for these lower scores will
be discussed in We cannot validate, according to this definition of the IXN scores, that

permission enforcement was successful.
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g — ™ ) <t 0 © ~ ® o =
Question | Baseline a 3 =] =] 3 3 3 =] =] =] =)
1 1 0 0.1 0.2 0.1 0 0.1 0.2 0 0.1 0.1 0
2 1 0.2 0.1 0.1 0.2 0.2 0.1 0.1 0.2 0.1 0.2 0.2
3 1 0.1 0.3 0.2 0.3 0.1 0.3 0.2 0.1 0.3 0.3 0.1
4 1 0.5 0.2 0.1 0.2 0.5 0.2 0.1 0.5 0.2 0.2 0.5
5 1 0.2 0 0.2 0.2 0.2 0 0.2 0.2 0 0.2 0.2
6 1 0.1 0.3 0.2 0.4 0.1 0.3 0.2 0.1 0.3 0.4 0.1
7 1 0.2 0.4 0.3 0.1 0.2 0.4 0.3 0.2 0.4 0.1 0.2
8 1 0 0.3 0.3 0.3 0 0.3 0.3 0 0.3 0.3 0
9 1 0.2 0.1 0 0.2 0.2 0.1 0 0.2 0.1 0.2 0.2
10 1 0.1 0.1 0.2 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.1
11 1 0 0.2 0.3 0.4 0 0.2 0.3 0 0.2 0.4 0
12 1 0.1 0.3 0.3 0 0.1 0.3 0.3 0.1 0.3 0 0.1
13 1 0.1 0.1 0.1 0 0.1 0.1 0.1 0.1 0.1 0 0.1
14 1 0 0.2 0.2 0.6 0 0.2 0.2 0 0.2 0.6 0
15 1 0.1 0.1 0.3 0.5 0.1 0.1 0.3 0.1 0.1 0.5 0.1
16 1 0 0.1 0.6 0.1 0 0.1 0.6 0 0.1 0.1 0
17 1 0.2 0.3 0.1 0.3 0.2 0.3 0.1 0.2 0.3 0.3 0.2
18 1 0.1 0.3 0.2 0.1 0.1 0.3 0.2 0.1 0.3 0.1 0.1
19 1 0 0.3 0.1 0.2 0 0.3 0.1 0 0.3 0.2 0
20 1 0.2 0.1 0.4 0 0.2 0.1 0.4 0.2 0.1 0 0.2
Average 0.12 | 0.19 | 0.22 | 0.22 | 0.12 | 0.19 | 0.22 | 0.12 | 0.19 | 0.22 | 0.12

Table 6.2: IXN Results where the set intersections are computed between the retrieved documents of
the baseline and the users. All users are compared against the baseline, which did not contain any
permission enforcements on the documents when querying the questions.

6.3 Response Quality

The average BLEU, ROUGE-1, and ROUGE-L scores across the 20 questions are summarized
in with the highest and lowest scores for each metric column highlighted in yellow
and pink, respectively. Two users, user 2 (ROUGE-1-P = 0.0816, ROUGE-L-P = 0.0771) and 3
(ROUGE-1-R = 0.4387, ROUGE-L-R = 0.3912), received the highest scores for two of the metrics.
User 1 outperforms the baseline in BLEU with a score of 0.0893, suggesting that this user did not
negatively impact fluency when answering. In ROUGE-1 precision, user 2 stands out with the highest
score of 0.0816, indicating that the outputs include more relevant n-grams relative to their shorter
answers. This suggests a higher precision at the cost of recall. Meanwhile, user 3 achieves the
highest ROUGE-1 recall, implying that the answers cover a greater portion of the given context.
ROUGE-L scores show a similar pattern, as the baseline also has the best overall ROUGE-L-F score
of 0.1052, but certain users excel in other metrics. For instance, user 2 has the highest ROUGE-L
precision score (0.0771), and user 3 again has the highest recall (0.3912). User 10 achieves the best
ROUGE-L-F score among all users, indicating a good balance between incorporating context and
generating a coherent output.

User 1, despite having the highest BLEU score, exhibits the lowest ROUGE-1 precision, F1 score,
and ROUGE-L precision and F1 scores. This suggests that while the output may closely match
specific exact phrases, it covers only a small portion of the full referenced context, indicating low
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completeness. Similarly, user 2 has the lowest ROUGE-1 and ROUGE-L recall, indicating that the
generated answers are either very short or miss substantial portions of relevant information from the
given context.

The same results are plotted in where the baseline stands out and receives a higher
score on almost every response quality metric.

Name | BLEU | ROUGE-1-P | ROUGE-1-R | ROUGE-1-F | ROUGE-L-P | ROUGE-L-R | ROUGE-L-F
baseline | 0.0863 0.0849 0.4099 0.1256 0.0700 0.3618 0.1052
admin 0.0417 0.0476 0.4138 0.0783 0.0423 0.3745 0.0701
user 1 | 0.0893 0.0205 0.3919 0.0376 0.0176 0.3409 0.0322
user 2 0.0598 0.0816 0.3054 0.0554 0.0771 0.2691 0.0482
user 3 0.0850 0.0254 0.4387 0.0444 0.0223 0.3912 0.0388
user 4 0.0721 0.0260 0.4191 0.0454 0.0219 0.3738 0.0384
user 5 0.0628 0.0227 0.4147 0.0389 0.0206 0.3749 0.0351
user 6 0.0479 0.0316 0.4023 0.0486 0.0263 0.3525 0.0405
user 7 0.0513 0.0232 0.3525 0.0402 0.0213 0.3122 0.0369
user 8 0.0501 0.0272 0.3971 0.0454 0.0220 0.3513 0.0364
user 9 | 0.0398 0.0261 0.4240 0.0404 0.0239 0.3896 0.0368
user 10 | 0.0556 0.0415 0.3637 0.0548 0.0327 0.3387 0.0458

Table 6.3: The average BLEU, ROUGE-1 (precision, recall, F1), and ROUGE-L (precision, recall,
F1) scores for each user compared to a baseline. It highlights the performance of user-generated
responses in terms of fluency and relevance. The highest and lowest scores for each response quality
metric are highlighted in yellow and pink, respectively.
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Figure 6.3: Comparison of BLEU and ROUGE metric scores across different users, illustrating the
variations in text generation quality and overlap with reference texts.

To better assess how document access policies influence the quality of RAG of each user for
each of the spaces, summarizes the mean of various BLEU and ROUGE scores across the
individual space keys for each user, with the highest score for each metric highlighted in pink and the
accessible spaces for each user highlighted in blue. For most users, the space key they have access to
stands out, consistently achieving higher scores across various metrics. For admin, user 1, 3, 5, 6, 7,
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and 10, the results are the highest within the space key(s) they have access to. The other users have
higher scores for other space keys that they do not have access to.

Name SIEZ;E BLEU | ROUGE-1-P | ROUGE-1-R | ROUGE-1-F | ROUGE-L-P | ROUGE-L-R | ROUGE-L-F
admin 0 0.0346 0.0618 0.2696 0.0905 0.0482 0.2333 0.0708
1 0.0521 0.0574 0.6234 0.1050 0.0564 0.5574 0.0964
2 0.0464 0.0614 0.5612 0.0994 0.0554 0.5121 0.0959
3 0.0338 0.0100 0.2012 0.0184 0.0093 0.1951 0.0171
user 1 0 0.0495 0.0131 0.3542 0.0247 0.0098 0.2817 0.0184
1 0.2156 0.0361 0.5611 0.0657 0.0311 0.5011 0.0567
2 0.0416 0.0174 0.4028 0.0313 0.0170 0.3821 0.0305
3 0.0506 0.0155 0.2497 0.0288 0.0126 0.1988 0.0233
user 2 0 0.0449 0.0501 0.3063 0.0759 0.0396 0.2536 0.0595
1 0.0956 0.2089 0.3327 0.0406 0.2079 0.3145 0.0388
2 0.0259 0.0154 0.3341 0.0780 0.0143 0.2975 0.0695
3 0.0729 0.0522 0.2485 0.0273 0.0466 0.2109 0.0252
user 3 0 0.0266 0.0118 0.3546 0.0227 0.0101 0.3180 0.0193
1 0.0374 0.0084 0.4497 0.0162 0.0065 0.4061 0.0127
2 0.0512 0.0353 0.4086 0.0643 0.0272 0.3188 0.0496
3 0.2247 0.0460 0.5420 0.0746 0.0455 0.5218 0.0735
user 4 0 0.0306 0.0428 0.3264 0.0688 0.0328 0.2821 0.0531
1 0.1556 0.0198 0.5829 0.0377 0.0165 0.5354 0.0315
2 0.0216 0.0109 0.3784 0.0206 0.0090 0.3134 0.0169
3 0.0807 0.0304 0.3885 0.0545 0.0292 0.3642 0.0521
user 5 0 0.0408 0.0138 0.3301 0.0260 0.0109 0.2859 0.0205
1 0.1052 0.0621 0.6076 0.1004 0.0590 0.5735 0.0952
‘ 2 0.0475 0.0096 0.4470 0.0187 0.0079 0.3965 0.0154
3 0.0577 0.0053 0.2739 0.0104 0.0046 0.2436 0.0090
user 6 0 0.0209 0.0336 0.4905 0.0485 0.0272 0.4459 0.0391
‘ 1 0.0687 0.0274 0.3730 0.0417 0.0203 0.3265 0.0311
2 0.0689 0.0539 0.5203 0.0831 0.0489 0.4569 0.0753
‘ 3 0.0332 0.0114 0.2254 0.0211 0.0089 0.1806 0.0165
user 7 0 0.0737 0.0607 0.5254 0.1001 0.0562 0.4638 0.0930
1 0.0637 0.0081 0.2707 0.0157 0.0069 0.2304 0.0134
‘ 2 0.0214 0.0188 0.3595 0.0349 0.0176 0.3243 0.0326
3 0.0463 0.0052 0.2546 0.0101 0.0045 0.2303 0.0088
user 8 ‘ 0 0.0310 0.0272 0.4901 0.0454 0.0208 0.4334 0.0347
1 0.0825 0.0249 0.5879 0.0459 0.0211 0.5370 0.0390
2 0.0227 0.0416 0.2837 0.0639 0.0343 0.2263 0.0510
‘ 3 0.0641 0.0151 0.2267 0.0265 0.0118 0.2085 0.0209
user 9 0 0.0322 0.0115 0.5502 0.0220 0.0095 0.5019 0.0181
1 0.0636 0.0191 0.5886 0.0370 0.0174 0.5454 0.0337
2 0.0473 0.0679 0.3742 0.0909 0.0633 0.3582 0.0851
3 0.0160 0.0061 0.1830 0.0118 0.0053 0.1527 0.0103
user 10 0 0.0266 0.0137 0.3425 0.0260 0.0116 0.3020 0.0221
1 0.1560 0.1205 0.5005 0.1345 0.0883 0.4573 0.1044
2 0.0244 0.0160 0.3504 0.0297 0.0150 0.3344 0.0278
3 0.0155 0.0158 0.2612 0.0290 0.0158 0.2612 0.0290

Table 6.4: The mean BLEU and ROUGE scores across individual space keys for each user. The
accessible spaces for each user are highlighted in blue, and the best-performing space per user (based
on each metric) is additionally emphasized in pink. This provides insight into how access to different
documents from the spaces affects RAG quality.
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6.4 RAGAS

compares the mean response quality scores for the baseline and users across the four metrics:
Context Precision, Answer Relevance, Faithfulness, and Context Recall. The baseline achieves the
highest scores for Context Precision (0.5789) and Context Recall (0.5125), indicating that it uses
context more accurately than other users. The baseline also performs well in Answer Relevance
(0.6457) but scores relatively low on Faithfulness (0.1167). Among the users, user 1 has the highest
Context Precision of 0.4000 and Context Recall of 0.4750, indicating accurate and complete context
retrieval. User 6 surpasses all other users, including the baseline with the highest Answer Relevance
of 0.8435. Nevertheless, the Context Precision is very low (0.0526) for user 6, while user 7 has the
lowest Faithfulness (0.1026), and user 4 has the lowest Context Recall (0.3267). This indicates that
some users retrieve less accurate or incomplete context or provide less faithful answers.

The same results are plotted in where the baseline again stands out and receives a
higher score on almost every RAGAS metric.

Context Answer . Context

Name Precision | Relevance Faithfulness Recall
baseline 0.5789 0.6457 0.1167 0.5125
admin 0.2500 0.5882 0.1682 0.3469
user 1 0.4000 0.5868 0.2019 0.4750
user 2 0.0526 0.7268 0.1523 0.3868
user 3 0.1579 0.6431 0.2706 0.4083
user 4 0.2000 0.6468 0.1559 0.3267
user 5 0.3500 0.8090 0.1942 0.4292
user 6 0.0526 0.8435 0.1290 0.3335
user 7 0.2000 0.7197 0.1026 0.3443
user 8 0.3500 0.5624 0.2467 0.3450
user 9 0.1579 0.6267 0.2161 0.3958
user 10 0.2500 0.7061 0.1568 0.3589

Table 6.5: The mean response quality scores for each user and baseline across four metrics: Context
Precision, Answer Relevance, Faithfulness, and Context Recall. Highlighted yellow values indicate
the highest score achieved per metric, pink values are the lowest scores.

45



User Metric Scores Comparison

0.8 W Faithfulness

B Context_Recall

0.71

0.6 4

0.5

Scores

0.4

0.3

0.2

0.1+

0.0 -
&

S

<o
®

A o o o3 oS g o n A o
o 2 2 2! o 2 2 L2 o e =
& N ¥ 5 & ¥ ¥ R4 & & &

Figure 6.4: Evaluation of response quality based on the RAGAS metrics: Context Precision,
Answer Relevancy, Faithfulness, and Context Recall across different users, highlighting variations in
information accuracy and relevance.

illustrates the relationship between user access to their spaces and performance across
four metrics: Context Precision, Answer Relevance, Faithfulness, and Context Recall. Each user
performs best in some of the spaces they have access to, as highlighted in blue, and the highest
scores for each metric are highlighted in pink. Within the users, there is a variability in scores across
different spaces. Users 3, 7, and 10 all have the highest scores within the spaces to which they have
access. The other users have at least one metric with a better score in another space. Looking across
all users, Answer Relevance scores are relatively high, above 0.8 in all cases, indicating that users
generally provide answers that are on-topic and useful. However, Context Precision, Faithfulness,
and Context Recall show greater variations. Faithfulness does not reach high levels, except for users
8 (0.5000) in space 1 and 9 (0.3906) in space 3. Context Recall also varies, with users achieving
scores above 0.6 for some spaces, indicating a better coverage of relevant context in the answers.
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Space | Context Answer . Context

Name Key | Precision | Relevance Faithfulness Recall
admin 0 0.4000 0.6990 0.2990 0.6250
1 0.0000 0.8232 0.0545 0.2154

2 0.0000 0.4630 0.1071 0.2000

3 0.6000 0.3677 0.2000 0.4167

User 1 0 0.2000 0.6270 0.0714 0.4500
1 0.6000 0.3517 0.1413 0.7500

2 0.0000 0.8554 0.2222 0.2500

3 0.8000 0.5132 0.3343 0.4500

User 2 0 0.0000 0.8299 0.3126 0.3000
1 0.0000 0.4589 0.0000 0.4250

2 0.0000 0.8170 0.0800 0.4000

3 0.2000 0.8013 0.2167 0.4222

User 3 0 0.0000 0.6842 0.2822 0.4000

1 0.0000 0.3282 0.2879 0.3000

2 0.0000 0.6743 0.1938 0.4000

3 0.6000 0.8857 0.3504 0.5333

User 4 0 0.4000 0.6615 0.3355 0.4000

1 0.0000 0.4646 0.0000 0.2154

2 0.0000 0.6552 0.0526 0.2000

3 0.4000 0.8058 0.1836 0.5327

User 5 0 0.2000 0.6915 0.1709 0.4333
1 0.6000 0.8706 0.2500 0.7000

2 0.0000 0.8669 0.1125 0.2500

3 0.6000 0.8070 0.2386 0.3333

User 6 0 0.0000 0.8042 0.0000 0.3000
1 0.0000 0.8482 0.1810 0.4250

2 0.0000 0.8668 0.0071 0.3000

3 0.2000 0.8547 0.3775 0.3028

User 7 0 0.4000 0.8885 0.3610 0.4000

1 0.0000 0.6456 0.0000 0.2000

2 0.0000 0.8246 0.0222 0.2000

3 0.4000 0.5201 0.0273 0.6354

User 8 0 0.2000 0.3333 0.1333 0.3800
1 0.6000 0.6601 0.5000 0.6500

2 0.0000 0.4412 0.2033 0.2500

3 0.6000 0.8148 0.1500 0.1000

User 9 0 0.0000 0.8669 0.2170 0.4000

1 0.0000 0.3385 0.1117 0.3000

2 0.0000 0.6531 0.1800 0.2500

3 0.6000 0.6484 0.3906 0.6333

User 10 0 0.4000 0.8433 0.2606 0.5000
1 0.0000 0.6766 0.0000 0.2154

2 0.0000 0.6462 0.1333 0.2500

3 0.6000 0.6584 0.2333 0.5333

Table 6.6: The mean Context Precision, Answer Relevance, Faithfulness, and Context Recall scores
for each user and the baseline. The accessible spaces for each user are highlighted in yellow, and the
highest value for each metric per user is highlighted in blue. This detailed comparison illustrates how
user-specific access impacts response quality across multiple evaluation criteria.
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6.5 Manual Inspection

Considering the limitations of the above scores, a manual inspection is also conducted to assess
response quality. Manual inspection enables an assessment of response quality that automated
metrics alone may miss, such as subtle inaccuracies, coherence, or understanding of context. Besides
evaluating the nuances in the responses, answers generated by clients should not include any sensitive
or classified information to which they should not have access.

6.5.1

During the inspection of the answers generated by different clients’ local LLMs, notable differences
emerged in generating responses, taking permissions into account. The answers in to the
first question already demonstrate permission enforcement (see for the questions), where a
client with access to the required documents to answer the question provides a concise, technical
summary that focuses on essential information relevant to the question. This response is accurate and
relevant, effectively capturing the information retrieved from the sensitive documents by addressing
the key points outlined in the ablation study. In contrast, the other client generated a much longer
response. This response resembles a more human-like thinking style and is not directly related to the
specific research question.

Responses with Permissions

Admin Response

User 1 Response

The ablation study in the R-GCN component demon-
strates that the edge information is crucial for the model’s
performance. By removing nodes and edges, the study
shows that the edge labels are significant for modeling.
This indicates that the edge information is crucial for
the model’s performance, particularly in handling graph-
based data where edge relationships are essential. The
study’s findings suggest that the edge information is cru-
cial for the model’s performance, and removing nodes
and edges significantly affects the model’s accuracy. This
study helps us understand which parts of the graph are
most important for the model’s performance, providing
insights into the graph’s structure and the model’s ability
to handle different graph sizes.

Okay, so I’'m trying to understand what the R-GCN
component is and why it’s significant within the Entity-
GCN model. I'm not very familiar with graph neural
networks (GCNs) or how they’re used in this context, but
I know a bit about machine learning and graph theory.
Let me break this down step by step. First, what is a
graph? A graph consists of nodes (also called vertices)
and edges that connect these nodes. In the context of
a study or research, the graph likely represents a set of
entities with relationships between them. For example, in
a social network, the nodes could be people and the edges
could represent friendships. Now, what is an Entity-GCN?
I think it’s a type of graph neural network specifically
designed to work with entities that have relationships.
These entities could be people, places, organizations, or
even other graphs. The idea is that each node in the
graph is an entity, and the edges represent some kind of
relationship or interaction between these entities. A paper
I came across mentioned that the R-GCN (Relation Graph
Convolutional Network) is a component of the Entity-
GCN. The name ”Relation” suggests that it’s focused
on relationships between entities rather than just any
connections [...]

Table 6.7: Raw responses from admin and user 1, answering question 1 with space key 0 from
“What is the significance of the R-GCN component within the Entity-GCN model based on
the ablation study?”. Admin has access to spaces 0 and 1, whereas user 1 has access to spaces 1 and
2. The response from user 1 is abbreviated with [...] for clarity.

6.5.2 Hallucinations

Hallucinations occur when a model produces information that is fabricated, misleading, or inconsistent
with the data or known facts. RAG should mitigate the hallucinations by providing the information
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needed to retrieve documents. illustrates an example of hallucinations in responses. User 2
has no access to this document regarding Bed Bath € Beyond bankruptcy, so the local LLM started
to hallucinate and states that “The government of the United States filed for bankruptcy for Bed
Bath & Beyond on January 27, 2018”, which is a statement that is incorrect and not supported by
any real-world event. Meanwhile, the response from user 9 shows repetitive and nonsensical text,
with parts of the phrase “The ruling was based on the case” repeated. The failure to generate factual
and meaningful content results in an output that is meaningless and misleading. User 10 provides a
more plausible answer by giving an answer directly to the question by stating that the company filed
for bankruptcy. This response avoids fabricated information and does not show hallucinations.

User 2 Response

User 9 Response

User 10 Response

The government of the United
States filed for bankruptcy for
Bed Bath & Beyond on January
27, 2018. This action was taken un-
der the U.S. Bankruptcy Act, specif-
ically for the chapter on Industrial
Property. The court ruled on the
case, determining that the company
had a valid bankruptcy claim and
that it had a significant impact on
the company’s operations and pro-
vided a proposed bankruptcy settle-
ment. The ruling was that the gov-
ernment could impose a $1.5 mil-
lion settlement on the company’s
claims, but the specific terms of
the settlement were not determined
yet. [...] In summary, the govern-
ment of the United States filed for
bankruptcy for Bed Bath & Beyond
on January 27, 2018, and provided a
proposed bankruptcy plan and set-
tlement. The government’s action
was to address potential financial
obligations and to consider further
legal steps if needed. The case is
ongoing and there is no final ruling
yet.

Okay, so I need to figure out if
the Bed Bath & Beyond company
filed for bankruptcy. Let me start
by recalling what I know about
bankruptcy. First, bankruptcy is a
legal process where a company stops
operating its business and is legally
taken over. [...] The ruling was
based on the case of Bed Bath &
Beyond, which had the case against
the company, and the court ruled
in favor of the company. The ruling
was based on the case of Bed Bath
& Beyond, which had the case of
the company and its operations. I
should also note that the ruling was
based on the case of the case of Bed
Bath & Beyond, which had the case
of the company and its case. The
ruling was based on the case of
the case of the case of the case
of the case of the case of the
case of the case of the case of
the case of the case of the case
of the case of the case of the
case of the case of the case of

[...]

The company Bed Bath & Be-
yond filed for bankruptcy be-
cause they couldn’t liquidate their
own assets and pay off their debts.
The exact details of the bankruptcy
process, including the amount of
money they had and the court pro-
cess, would need to be looked up for
more information. In summary, Bed
Bath & Beyond filed for bankruptcy
because they couldn’t liquidate their
own assets and pay off their debts,
and they sold their own shares to
cover their debts.

Table 6.8: Raw responses from user 2 and user 9, answering question 12 with space key 3 from
Table 9.1} ”Did Bed Bath & Beyond file for bankruptcy?”. User 2 has access to space 2, whereas
both users 9 and 10 have access to space 3. Highlighted in yellow are the hallucination-generated
texts from users 2 and 9. The blue highlight marks a correct and concrete answer to the question.
Responses from users 2 and 9 are abbreviated with [...] for clarity.
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Chapter 7

Discussion

This chapter discusses the various results obtained during the evaluation of our framework. In the
first section, the key scores and metrics will be interpreted. The following sections will contain the
challenges during both the implementation and practical use of the framework.

7.1 Interpretation of the Results

In this section, the IXN Scores, RAGAS metrics, ROUGE, and BLUE metrics will be further
interpreted based on the results in Besides interpreting the results, these metrics will also
be discussed based on their limitations.

7.1.1 IXN Scores

Further interpreting the IXN results, the results were inconclusive in fully validating its success.
Question 14 for users 3 and 9 and question 16 for users 2 and 6 have the highest IXN scores, which
are 0.6. These results are noteworthy because they suggest that 60% of the top papers that the
secure system retrieved were the same as those that the baseline system retrieved. Specifically, users
2, 3, 6, and 9 had the highest average IXN score of 0.22, indicating that their retrievals overlapped
most closely with the baseline. According to the definition of the IXN score, these users should have
the most access to documents across permission boundaries. However, this contradicts the actual
permissions these users have, as shown in where users 3 and 9 only have access to one
space each. This could indicate a concentration of relevant documents in those spaces. On the other
hand, users with limited access, such as 4 and 7, have lower IXN scores, indicating that access control
prevented them from retrieving many documents that the baseline would have returned.

As suggested by Chen [53], the IXN score was used to evaluate retrieval security. While the
results from Chen were significant, the results from this research deviate notably. The key difference
here lies in the implementation; in our framework, a separate vector store is instantiated for each
client, including the baseline. This decision results in variations in the retrieval of documents for
semantically similar queries. While there are cases where clients do have some overlapping documents,
this overlap is not consistent across all queries (as shown in . This variability highlights
the sensitivity of this metric to the storage and configuration of vectors for clients. In Chen’s case,
retrieval is performed on only a few vector stores, rather than creating a separate vector store for
each client.

During the implementation phase, experiments have been conducted using a single vector store
for document retrieval. Using a shared vector store is a straightforward method since it enables more
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consistent and higher-quality retrieval, as all clients benefit from a larger and unified knowledge base.
However, this would be contrary to the security principles of using this framework in an environment
that handles classified documents. Sharing embeddings in a global vector store, even if noise or
anonymization is added to them, introduces a potential risk as the vectors become vulnerable to
inference attacks, embedding inversion, or membership inference, where an adversary could potentially
extract sensitive information from the shared vector store.

7.1.2 ROUGE and BLEU

The analysis of response quality reveals nuanced variations in how document access policies influence
the effectiveness of RAG across different users. BLEU, ROUGE-1, and ROUGE-L provide insight
into the fluency, precision, and recall of generated answers. Across nearly all users, the highest BLEU
and ROUGE scores were found within the spaces to which they had explicit access. For example,
user 3 performed best in space key 3, which they had access to, and similarly for users 1, 5, 6, and 10.
This supports the hypothesis that document access policies have a direct impact on the quality of
RAG outputs. Users with access to only a subset of documents underperformed for the recall metrics.
This suggests that their generated answers were limited by insufficient context, which highlights
the effect of restricted access on the quality of question answering. Some users generated short but
precise answers, characterized by high precision and low recall. In contrast, others offered a more
extensive but less focused response, marked by high recall but lower precision or BLEU score.

The dataset DOCBENCH includes sufficient variety across space keys to demonstrate the nuanced
effects of document access. Precision and recall varied significantly across users, which confirms that
the dataset was complex and diverse enough to expose real differences. When interpreting response
quality based on the ROUGE and BLEU scores, we note that these metrics are computed using exact
word matching rather than semantic content, which is a key concern in RAG. These metrics are used
widely due to their simplicity and computational efficiency, but they have notable limitations. This
limitation rises especially in the context of RAG, where responses could have semantically equivalent
meanings, yet exact word matching would consider these answers different. The retrieved content
may be phrased differently from the true answers, leading to a low overlap in exact word matching,
even if the generated response is accurate and relevant. While this delivered a measure of precision, it
did not fully reflect the architecture’s ability to generate semantically accurate and relevant responses.
Therefore, relying only on exact word matching could lead to an underestimation of the model’s true
performance.

Additionally, the results represent an average across all questions, including those for which users
did not have access to the necessary documents to answer them accurately. Questions for which users
do not have access lead to lower scores, which reduces overall precision, recall, BLEU, and ROUGE
scores when taking the average.

7.1.3 RAGAS metric

The RAGAS metrics were used to evaluate response quality, including the following metrics: Context
Precision, Answer Relevance, Faithfulness, and Context Recall. Unlike ROUGE and BLEU, evaluating
with this method gives more insight into the semantic content of the generated answers by the local
LLMs of the clients. As the results from do indicate the influence of implementing FL with
security measures and permission enforcement, gives more insight into how the RAGAS
metrics vary when compared per space key instead of per question. For most users, the majority
of the highest scores in pink correspond to the spaces to which they have access. Admin has, for
example, a high Context Precision for space 3, while it only has access to spaces 0 and 1. The user
where this significantly stands out is user 6, where only Answer Relevance is the highest for space
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2. After manually inspecting some of the generated answers by user 6, and given that user 6 was
only trained for one communication round (see 7 we can conclude that this client was not
sufficiently trained to perform accurately within the spaces to which they had access. Other users
perform exactly as expected according to the accessible spaces, such as users 3, 5, 7, and 10.

Using 1lama3:8b as a judge LLM, a consistent evaluation was performed to compute the
RAGAS scores. This model was selected for its robust instruction-following capabilities and balanced
performance in comprehension and factual judgment tasks. Using such a capable judge model helps
approximate human-level evaluations while allowing reproducible assessments across a wide set of
client answers. The results for RAGAS suggest that for accurate outcomes, high-quality reasoning
and effective retrieval methods are essential for generating grounded responses from federated RAG
systems.

7.2 Challenges in Federated Learning

Implementing FL for LLMs introduces several complexities. Maintaining privacy across clients while
allowing shared updates is one of these hurdles. One of the main questions about why these shared
weights can be shared safely is due to the implementation of DP and HE. The proposed method
defends against inference attacks as the server can only access encrypted LoRA parameters. After
aggregation, only updates are shared with the clients, which are then loaded into the local model.

FL training is slower to converge compared to centralized learning due to sparse or even conflicting
updates from clients, as is shown in When large LLMs are used for FL, communication
bottlenecks also arise. LoRA helps mitigate this by reducing the sizes of the updates, but the overall
communication round complexity remains high, especially if this setup is deployed in the real world.
Training this setup with the aforementioned parameters took 30 to 50 minutes, which is manageable
for a training setup, but not for a real-world case environment where a larger LLM is preferable.

Another challenge is ensuring fairness among clients. Some clients may drastically vary in terms
of data quantity and document access. Without careful aggregation, clients with more data may
dominate model learning, resulting in even greater communication overhead. This could also lead
to a biased performance that benefits only a specific group of users with the same role. Ensuring
that each user benefits equally from FL training remains an aspect to be researched within the FL
domain.

Finally, FL systems are still vulnerable to a variety of threats. A thorough security assessment is
still required, even though this thesis presents mitigation techniques like HE and DP. In particular,
inference attacks, such as prompt injections, were not addressed in this research and were outside of
the current scope.

7.3 Challenges of using DeepSeek

One of the challenges of using the smallest model of DeepSeek, DeepSeek-R1-Distill-Qwen—-1.5B,
is that the rate of hallucinations is high, often producing outputs that are factually incorrect or struc-
turally incoherent. This issue is apparent in several generated responses, where not only fabricated
claims but also repetitive words were present, significantly diminishing the readability and credibility
of the answers, as shown in Client 9’s model frequently generated text with repetitive
words. These hallucinations can undermine the purpose of safely using an LLM on classified data, as
it may produce incorrect or misleading information. In high privacy-sensitive environments, the risk
of hallucinations can be as problematic as direct unauthorized access.

Furthermore, the presence of hallucinations complicates evaluation. BLEU and ROUGE fail to
penalize hallucinated content if it accidentally lexically overlaps with the ground truth. RAGAS
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metrics may not fully capture the nuances of these repetitions and may also penalize them. This also
highlights a broader limitation in current LLM evaluation, where evaluating an LLM without human
evaluators remains a significant challenge.

7.4 Real-World Implications

Due to significant computational demands from the FL training setup, the experiments are limited to
eleven clients. This decision was primarily due to the available hardware resources, as training with
local LLMs requires substantial RAM and processing power. Each client hosts a local LLM, managing
its retrieval and participating in the FL process, all of which do not scale in practice with the limited
hardware. Additionally, HE effectively preserves privacy, but it introduces additional computational
and memory overhead. These same limitations ensured that only the smallest DeepSeek model
could effectively be run across all clients without using too much of the hardware’s memory capacity.
Larger variants of DeepSeek were ruled out due to the extensive memory usage. The findings and
scalability of the setup should be interpreted in light of these computational constraints.
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Chapter 8

Conclusion

This research explored the integration of FL. with LLMs in the context of RAG, with a strong focus on
secure and privacy-preserving model training across distributed environments that contain sensitive
data. A practical framework was implemented using PEFT, specifically LoRA, local RAG, and
privacy methods such as HE and DP. The findings from this work are summarized below, organized
by the primary research questions.

How can federated learning be used to train LLMs on sensitive data without exposing
that data?

This research demonstrated that FL can be adapted to enable training LLMs across clients that
hold sensitive documents. By fine-tuning the local models of the clients with LoRA, clients went
through a training process while maintaining complete control over their private documents, which
were decentralized. The LoRA weights enabled aggregation at the server side in the setup, thereby
reducing communication overhead. Each client managed the retrieval and inference of their local
LLM. HE and DP were implemented to protect the weights during communication and aggregation.
This framework preserved data privacy using these mechanisms while still allowing for meaningful
global model improvements across communication rounds.

What are the risks of using LLMs in a federated learning setup without taking security
into account, and what mitigation can be used?

FL systems are vulnerable to a range of adversarial threats, such as eavesdropping on model weights,
gradient leakage, and poisoning attacks. Without mitigations, a central server could exploit parameter
updates, a malicious client could poison the dataset, or an adversary could steal the weights. To
counter this, HE was used to protect updates from being inspected by a curious server, and DP
added noise to further obscure sensitive gradients. Although these methods introduced computational
difficulties, the security guarantees they provide are essential to call this proposed framework safe
and privacy-aware.

How does permission enforcement affect the accuracy of LLM responses for authorized
clients?

Clients receive answers based only on the documents they are permitted to access. This thesis
introduced a permission-aware retrieval and inference pipeline that enforced document-level access
control (also see [section 4.4). While it was, for most users, effective in preventing data leakage,
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permission enforcement also introduced challenges. Limiting the context window to only the client’s
accessible documents sometimes resulted in lower BLEU, ROUGE, and RAGAS scores. However,
according to the different metrics used, the framework restricted correctly information for some of
the users, for admin, user 1, 3, 5, 6, 7, and 10 for BLEU/RAGAS (see and for users 3,
7, 10 for RAGAS (see . The evaluation also showed that users with fewer permissions
sometimes received responses with lower semantic relevance, which highlights a trade-off: stronger
security may reduce answer accuracy.

This research presents a practical approach to using FL for LLMs with document-level security
policies. Secure, privacy-aware, and FL training is feasible without requiring centralization of the
users’ data. The framework achieves this by combining secure model update mechanisms, LoRA,
HE, and DP, and decentralized RAG modules with permission enforcement. The findings highlight
the trade-offs between access control and model performance. As more security measurements are
required, the semantics and accuracy of answers may degrade. However, in sensitive domains, such
trade-offs are necessary to comply with the privacy and security requirements.

8.1 Future Work

While this research has demonstrated the applicability of using FL for LLMs and incorporating
privacy measures to enhance security, several directions remain open for future work to further
improve both the framework’s robustness and its practical applicability. A critical next step is to use
more clients to make it more realistic, resembling the real world. Extending the framework with more
clients, possibly in the hundreds, would better simulate production environments such as healthcare,
governmental setups, or large enterprises. Achieving this scale will require optimizing the memory
usage of client models, such as parallelizing computations more effectively. Model diversity is another
challenge for exploration. In this research, all clients used the same base model. However, real-world
scenarios may involve different LLMs with additional capabilities or specializations. Evaluating how
these different models affect convergence and response quality in FL still remains unexplored.

In terms of privacy and security, the framework utilizes HE and DP to ensure the safe deployment
of model updates. Future efforts could potentially concentrate on applying a different technique called
pruning. Before sending the clients to the server, some of the weights can be pruned to ensure both
efficiency and security. Less important weights can be set to zero after PEFT, focusing computational
resources on the most relevant parameters.

As previously discussed, a persistent challenge is the evaluation strategy, which reflects an
unresolved trade-off in current research between efficiency and semantic accuracy. This research
utilized automated metrics, such as RAGAS, ROUGE, and BLEU, which fall short in either capturing
semantics or user relevance. Future research could incorporate more sophisticated evaluation methods,
including those using semantic similarity models or human-in-the-loop systems.
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Chapter 9

Appendix

9.1 Prompt Template

Listing 9.1: Prompt template used for generation

messages

{

l

expert assistant that provides only direct, verified answers.

R

1 how your reasoning, thou

2. Answer immediately with the f , most accurate response.

3. If unsure, say: "I don't have verified information on this."
4. Avoid all filler language, including:

- "Okay, so I need to figure out..."

— "Let me break this down..."

- "I'm not very familiar, but..."

5. For lists or
6. If the quest

ht process, or analysis steps.

tegories, state them without introduction.
requires a source (e.g., reports)

“ite it or admit uncerta

"role": "user",
ntm: gnmww
Context (optional):

Question:
{query}

nun
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9.2 Questions

# Slgz;e Question

1 0 What is the significance of the R-GCN component within the Entity-GCN model
based on the ablation study?

2 0 What are the consequences for a foreign national who changes their resident status
and moves out of Iran without transferring their real estate rights?

3 0 Is the IBGE allowed to share data with public or private companies for generating
official statistics?

4 0 What model does China Exim Bank follow, which allows the use of natural resources
as collateral for loans?

5 0 Has the United Kingdom introduced a bill concerning the regulation of AI and workers’
rights?

6 1 Which training signal resulted in the highest score for the CITE category?

7 1 Which model showed the largest improvement in AUC value after the addition of
DSGAN?

8 1 What is the Word Error Rate (WER) of the ATD spell-corrector model for the 'Key’
attack?

9 1 What might hinder the U.S.’s ability to achieve strategic prevention of religious freedom
violations?

10 1 What is the energy efficiency target for Toyota’s compact SUV in the bZ series?

11 2 How does the performance of LSTUR-con measured by AUC compare to LSTUR-ini
as the mask probability p increases?

12 2 What are the four distinct focus areas of Novo Nordisk’s corporate strategy?

13 2 Did Bed Bath & Beyond file for bankruptcy?

14 2 What accomplishments had Louise Gliick achieved before receiving the Nobel Prize?

15 2 What positions did Dr. Reese hold at the Company between 2015 and 20187

16 3 What is the BLEU score for CodeBERT when pre-trained with MLM~+RTD objectives?

17 3 Which metric showed a statistically significant increase in correlation with human
assessment over all other metrics for the German to French language pair according to
Williams test?

18 3 What is the performance score for Entity Recognition when multitasked with Corefer-
ence Resolution?

19 3 Why are the results of BERT with a mean of 71.6% not considered meaningful?

20 3 On which platform were the annotations for the BoolQ dataset collected?

Table 9.1: List of questions categorized by their corresponding space key, providing an overview of
the topics and their associated identifiers used in the study.
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9.3 Extended Evaluation Metrics

ID | BLEU | ROUGE1L-P | ROUGE1l-R | ROUGE1-F | ROUGEL-P | ROUGEL-R | ROUGEL-F
0 0.1131 0.1885 0.4600 0.2674 0.1393 0.3400 0.1977
1 0.0352 0.1195 0.3878 0.1827 0.1006 0.3265 0.1538
2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 0.0245 0.0012 0.5000 0.0024 0.0012 0.5000 0.0024
4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
5 0.1589 0.1064 0.6250 0.1818 0.1064 0.6250 0.1818
6 0.0246 0.1186 0.6364 0.2000 0.1102 0.5909 0.1857
7 0.0456 0.0547 0.6111 0.1005 0.0547 0.6111 0.1005
8 0.0313 0.0026 0.3333 0.0051 0.0026 0.3333 0.0051
9 0.0000 0.0048 0.6000 0.0095 0.0032 0.4000 0.0063
10 | 0.1196 0.1282 0.5172 0.2055 0.1111 0.4483 0.1781
11 | 0.0130 0.0201 0.5000 0.0387 0.0147 0.3636 0.0282
12 | 0.0403 0.1429 1.0000 0.2500 0.1429 1.0000 0.2500
13 | 0.0216 0.0058 0.6000 0.0114 0.0058 0.6000 0.0114
14 | 0.0375 0.0098 0.5000 0.0193 0.0074 0.3750 0.0145
15 | 0.1555 0.0177 0.7333 0.0345 0.0177 0.7333 0.0345
16 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
17 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
18 | 0.0137 0.0321 0.2727 0.0575 0.0286 0.2424 0.0511
19 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 9.2: Response quality metrics for Client 1.

. Context Answer . Context
Question Precision | Relevance Faithfulness Recall
1 1.00 0.84 0.40 1.00
2 1.00 0.92 1.00 1.00
3 0.00 0.00 0.00 nan
4 0.00 0.87 0.00 0.50
5 0.00 0.87 0.10 0.00
6 0.00 0.76 0.00 1.00
7 0.00 0.86 0.00 0.00
8 0.00 0.81 0.27 0.00
9 0.00 0.81 0.00 0.00
10 0.00 0.88 0.00 0.08
11 0.00 0.63 0.00 1.00
12 0.00 0.00 nan 0.00
13 0.00 0.89 0.00 0.00
14 0.00 0.80 0.43 0.00
15 0.00 0.00 0.00 0.00
16 0.00 0.93 0.00 0.00
17 0.00 0.91 0.00 nan
18 1.00 0.00 0.00 0.00
19 1.00 0.00 1.00 1.00
20 1.00 0.00 0.00 0.67

Table 9.3: Response quality score for Client 1.
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9.4 Code Repository

The complete source code for the framework developed in this thesis is publicly available on GitHub:
https://github.com/pcrooijendijk/Master_Thesis.git
The repository includes the following components:

e The full implementation of the framework discussed in this thesis.
e Datasets used for testing, evaluation, and training.

e Scripts for data preprocessing, model training, and other essential functions to run the frame-
work.

For instructions on how to set up and use the code, please refer to the README . md file included in
the repository.
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