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Abstract

Pleasure of music in humans arises from the interaction between the reward system and
the auditory areas of the brain; humans find music rewarding. Previous research by Gold
et al. (2019) already showed significant results by using the Information Dynamics of
Music Model (IDyOM) to measure predictability and uncertainty in music. This thesis
will measure these same factors of music by using the Music Transformer (MT) to explain
the same data. It can then be possibly concluded that it is preferable to use the MT
rather than the IDyOM.
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Chapter 1

Introduction

One of the greatest pleasures among humans is music. This pleasure arises from the
interaction between the reward system and the auditory areas of the brain; humans find
music rewarding (Gold et al. 2019). Dopamine cells encode to what extent the outcome
matches our expectations, there are stronger responses to outcomes that are better than
expected (Salimpoor et al., 2015). Expectations of the sequence of different notes in
music shape our experience of music, the prediction error from the dopamine cells helps
us to improve future predictions. According to Sloboda (1991), emotion is based on
confirmations and expectancy violations. Music is often most pleasurable when these
changes in notes are dramatic and sudden. These changes are liked by humans when they
are in naturalistic and familiar music (Sloboda, 1991). Yet these surprises are unpleasant
when the context is lacking, or when the expectations are violated.

There are two aspects of expectations in music according to Salimpoor et al. (2015):
the knowledge of how a musical piece, which is familiar, will unfold, and the implicit
understanding of the rules of music based on the music-listening history someone has.
Social and cultural influences can affect these aspects by using human statistical learning.
But how can a piece of music be better than we expected? According to Salimpoor et al.
(2015) the answer lies in the sheer complexity of music. This includes that a musical piece
needs to be complex; it has to have changing harmonic, unique expressive features of a
performer’s personal style and spectral and rhythmic features (Salimpoor et al., 2015).
When listening to musical pieces with these properties, we have expectations of which
event will be next. When to expect an event, relates to matching the structure of the
musical piece with the rhythm of the music which then can be extrapolated in the future
(Rohrmeier & Koelsch, 2012). Could the expectancy (entropy) and melodic surprises
(information content) of notes help explain the pleasure of music?

Gold et al. (2019) already studied two key aspects of musical complexity, predictabil-
ity and uncertainty. Two studies have been conducted by Gold et al. (2019) where they
evaluated how uncertainty and predictability affect musical preferences in human partic-
ipants, using the Information Dynamics of Music Model (IDyOM). Gold et al. (2019)
found the Wundt effect in their results; the effect which links pleasure to intermediate
levels of arousal (Wundt, 1948). This phenomenon shows a U-shaped curve in the results
where its effect is pleasant or rewarding. The peak of its curve is the preferred level of
predictability (Lisøy et al., 2022). However, when the values are increased to higher levels,
it can be experienced as unpleasant. In the results of both studies, the Wundt effect can
be found between the liking ratings and both uncertainty and entropy. In this Bachelor
Thesis, the predictability and uncertainty of music will be studied, using a transformer
neural network: the Music Transformer (MT). Since the state-of-the-art model can cap-
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ture long-range dependencies and can be trained on polyphonic music, can it also evaluate
the musical preferences in the same human participants from the research from Gold et al
(2019) better than the Information Dynamics of Music Model did? Also, can the Wundt
effect in the results of the probability distribution from the MT be found again using the
same human liking ratings?

1.1 The Wundt effect

It is probable that humans will dislike music that surpasses their level of comprehension
or processing capability. It is also feasible that music which is significantly less complex
than an individual’s processing ability may be perceived as dull, repetitive, and tedious,
leading to a dislike of such music (Madison & Schiölde, 2017). The Wundt curve (Wundt,
1874), captures these two aspects. Gold et al. (2019) tested for the Wundt effect between
complexity and liking (see figure 1.1). Berlyne (1971) already linked the Wundt effect
with pleasure to intermediate levels of arousal. Berlyne’s experiments and his succes-
sors have focused on examining the impact of collative variables on preference. Among
these variables, complexity and familiarity have received significant attention (Chmiel &
Schubert, 2017). Another research by Rossing & Stumpf (1998) named ”The Science of
Sound” also discusses the Wundt curve in the context of musical perception. The authors
explain how the Wundt curve can be used to enhance musical expression and create a
more dynamic musical experience for the listener.

What Gold et al. (2019) concluded from their results is that the participants preferred
music with medium complexity more than simple and highly complex music. This con-
clusion is also supported by Madison & Schiölde, (2017), who found that complex music
requires more hours to listen to in order for the listener to develop some level of familiarity
that is required to get pleasure from it. The same liking ratings from the participants
will be used to compare the information content (IC) and entropy from the MT to search
for the Wundt effect. If the Wundt effect is found in the results, the preferences of the
human participants for the different degrees of complexity of music can be discovered.

Figure 1.1: The Wundt curve (Madison & Schiölde, 2017)
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1.2 Why use the Music Transformer?

The Music Transformer and the Information Dynamics of Music (IDyOM) model are
both powerful models for generating music. While they share some similarities, there are
several advantages to using the Music Transformer over the IDyOM model:

1. Better long-term dependencies: In the IDyOM model, the Markov assumption
limits the ability of the model to capture long-term dependencies. The Markov
property in the IDyOM restricts the model’s consideration of dependencies between
musical events to a fixed number of preceding events, it is a simplifying assumption
(Pearce, 2018). The length of how many preceding events the IDyOM is considering
is determined by the order of the Markov assumption. The Music Transformer, on
the other hand, uses self-attention mechanisms (see section 1.3) to better capture
long-term dependencies. It also captures relationships between the different events
in the entire input sequence (Huang et al., 2018). So while the IDyOM has local
coherence, it may limit the model’s ability to capture long-term dependencies and
generate music with more global coherence compared to the MT.

2. Increased flexibility: The Music Transformer is also more flexible than the
IDyOM model, as it can also be trained on polyphonic music and different styles
of music (Huang et al., 2018). The IDyOM model, on the other hand, is more
specialized and designed specifically for Western classical music (Pearce & Wiggins,
2004). Furthermore, the MT can be fine-tuned for a wide variety of tasks, including
music composition arrangement, and transcription, whereas the IDyOM model is
primarily designed for music prediction.

3. Better performance: Kern et al. (2022) tested the performances of the MT and
IDyOM models with which these models predicting upcoming notes, given prior
notes. The MT performed slightly better than the IDyOM, the IDyOM had an
accuracy level of 53.5% and the MT 54.8%. Additionally, Kern et al. (2022) found
this increased predictive accuracy score for the MT when the context length k
increased, from 9.17% for k = 1 up to 54.82% for k = 350. The IDyOM, however,
had an optimal performance when the context had a length of 4, this was caused
by the Markov assumption. In terms of note-level surprise, the MT also performed
better. The predictive performance measurement for both models involved assessing
the median surprise across compositions. Lower values indicated a greater ability to
predict the next note based on the context of the current note. The IDyOM scored
1.46 and the MT 1.15 (Kern et al., 2022).

While both models are suited for generating and analysing music, the MT has signif-
icantly more advantages in terms of its flexibility, performance and its ability to capture
long-term dependencies.

1.3 The internals of the Music Transformer

The Music Transformer is a Transformer model with self-attention, meaning it can model
long-range dependencies which makes it robust (Tay, 2020). It has access to the output
which was generated previously and computes the next steps efficiently. Neural networks
have to store this memory which they want to access later in a fixed-size memory state.
Saving all these previous states can make training way more difficult (Huang, 2018).
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According to Huang (2018), having these self-attention mechanisms, the MT can capture
the self-referential characteristics music has. Transformer models process all notes of
music as a whole, whereas other neural networks take sequences of variable length as
input.

1.3.1 Data Input

For the input for training the MT, a language-modelling approach is used. The music
is encoded as a sequence of tokens, and the different notes the MT knows will be deter-
mined by the training dataset (Huang, 2018). The total amount of MIDI pitches is 128,
which indicates the onset of MIDI pitches from 0 (C-1) to 127 (G9) (Y. Huang & Yang,
2020). The input sequence is encoded according to different events, see table 1.1 for the
definitions.

Event Definition

128 NOTE ON events Starting a note with one of the 128 MIDI pitches.

128 NOTE OFF events Ending a note with one of the 128 MIDI pitches.

100 TIME SHIFT events Relative time gap between events.

32 SET VELOCITY events Velocity of coming NOTE ON events,

where the 128 possible MIDI velocities are quantized into 32 bins.

Table 1.1: Table to test captions and labels (Huang, 2018).

The tokens are derived from a symbolic representation of the music, which are MIDI
files in this research. This representation has its roots in the MIDI files since these are
also using NOTE ON and NOTE OFF events (Y. Huang & Yang, 2020).

1.3.2 Transformer Encoder

The encoder consists of multiple layers of feed-forward neural and self-attention networks
(Zhang, 2021). Each layer consists of two sublayers. The first sublayer is a multi-head self-
attention mechanism, while the second sublayer is a feed-forward network. The encoder
eventually gives a vector representation as output for each position of the input sequence.

1.3.3 Transformer Decoder

The decoder of the MT is programmed with multiple identical layers as the encoder. Every
layer in the decoder has three sub-layers which form a residual connection followed by
layer normalization (Zhang, 2021). It can, with the help of attention mechanisms, review
an entire sequence and it can choose the different notes to decode (Rahali & Akhloufi,
2023). When generating a musical piece, given a prior, the final layer of the decoder
generates a probability distribution of the whole vocabulary of possible tokens on which
the model was trained on. This final layer consists of a linear transformation followed by
a softmax activation function (Huang, 2018).

5



Chapter 2

Methods

Gold et al. (2019) found the Wundt effect in their data by comparing the IDyOM’s
probability distributions of the IC and entropy with the liking ratings of the participants.
In the section below (section 2.1), a brief description is given of how Gold et al. (2019)
required their human data, and how this data will be used to compare it to the IC and
entropy computed by the MT (section 2.4). With this comparison based on the probability
distributions from the MT, the liking rating data will be plotted with both the IC and
entropy. Analysing these plots will show whether there is a Wundt effect to be found, and
whether this effect is more present when using the MT rather than the IDyOM model.
Only the data from the first study by Gold et al. (2019) were used.

2.1 Participants and procedure

In this research, the liking ratings from the human participants from the study by Gold
et al. (2019) were used. Their study involved 44 healthy volunteers (25 females, mean age
± SD = 21.56 ± 3.31 years) with normal hearing who listened to the 55 musical excerpts
and rated their level of liking for each musical piece on a scale ranging from 1 (very little)
to 7 (very much). Before the listening task, participants completed three questionnaires
on their musical sophistication, the degree to which they associate music with reward, and
their personality traits. In addition to the rating task, the participants were assigned an
orthogonal task of pressing the ”Enter” key as soon as they detected a timbre change in
the stimulus. This secondary task aimed to ensure their attentiveness during the listening
task. Participants were asked to exclude any excerpts they recognized to avoid a possible
relationship between familiarity and musical predictability. From the 2337 trials in total,
431 trials were rated as familiar by the participants, leaving 1906 stimuli in total for the
analysis.

There were four alternative viewpoints suggested of the IDyOM by Gold et al. (2019).
A total of seven different configurations were modeled, and the selection of these models
was based on a comparison between the IC output of each model and the unexpectedness
ratings provided by a separate sample of 24 participants. This second sample consisted
of 17 females and 7 males, with a mean age of 22.08 years (± 2.70 standard deviation)
and a mean musical experience of 2.89 years (± 4.52 standard deviation) 1. Subsequently,
the musical pieces were sorted into five clusters of mean duration-weighted information
content (mDW-IC), which were computed in the selection trial, and presented to the
participants in a random and participant-specific order. Two participants were excluded

1It’s important to note that these participants did not take part in the initial study.
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from the analysis. One rated every stimulus as familiar. Another withdrew from the
experiment halfway through, and the data which was already collected were used.

For more details, see section Study 1, Materials and Methods in the research paper
by Gold et al. (2019).

2.2 Stimuli

The 55 stimuli were snippets from real composed music pieces retrieved from the public
Musical Instrument Digital Interface databases. The following websites were used for the
retrieval: www.osk.3web.ne.jp/∼kasumitu/eng.htm and www.classicalarchives.com/midi.html.
The MT was used to compute the unpredictability and uncertainty of all 55 stimuli.
Monophonic stimuli were used to avoid the effects of harmony and polyphony, the peak
amplitudes were also normalized to the same level, and the tempo was also changed to
either 96, 120 or 144 bpm. The stimuli were transformed into WAV files that possess a
naturalistic quality. The conversion process was carried out using the Kontakt 5 synthe-
sizer developed by Native Instruments (2018). The execution of the conversion took place
within the Ableton Live 9 digital audio workstation, developed by Ableton (2018). Each
musical piece was generated using a digital flute synthesizer, except for the attention trial
stimuli. Digitial filtering techniques were applied to simulate the more natural sound
of a music studio. To enhance the organic feeling of the stimuli and prevent them from
sounding mechanical or artificial, Gold et al. (2019) introduced slight random shifts to the
note onsets at a millisecond scale using Ableton’s Groove Pool with a 25% randomization
factor, thereby incorporating a more human touch to the stimuli.

For more specifications about the stimuli, see appendix A.

2.3 Computational modeling

2.3.1 Training

The MT is trained by Kern et al. (2022) on the polyphonic Maestro corpus, which can be
found on: https://magenta.tensorflow.org/datasets/maestro. This dataset contains 200
hours of audio and MIDI recordings performed by various artists. My script is based on the
open adaptation for PyTorch https://github.com/gwinndr/MusicTransformer-Pytorch and
code from Kern et al. which is publicly available on the Donders Repository
https://data.donders.ru.nl/collections/di/dccn/DSC 3018045.02 116?0. Although Gold
et al. (2019) used their own corpus of Western music, I will be using the pre-trained
MT. Kern et al. (2022) used 300 epochs and the training parameters from the original
paper by Huang et al. (2018) (learning rate = 0.1, batch size = 2, number of layers = 6,
number of attention heads = 6, dropout rate = 0.1). The progress of the training based
on the cross-entropy loss computed on both the training and test data (80%-20%) was
monitored. The cross-entropy loss, which represents the average surprise across all notes,
served as the metric to train the model in minimizing the surprise associated with upcom-
ing notes. They achieved a minimum loss of 1.97, and this was comparable to the value
reported in the paper by Huang et al. (2018) which was 1.835. After the initial training,
the model was finetuned to adjust to monophonic music. The same training parameters
were used when training on the Monophonic Corpus of Complete Compositions (MCCC)
dataset (https://osf.io/dg7ms/). The weights which were used for the pre-trained MT
are obtained by Kern et al. (2022) at epoch 21.
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2.3.2 Computations

Using the pre-trained model, it computes the probability distribution Xt of the next note
at time point t given k preceding consecutive notes using a sequence-to-sequence method:

P (Xt|xt−1
t−k),where X ∈ 0...127, k > 0, t ≥ 0 (2.1)

The first note in the composition has a uniform distribution for each possible note,
which will be P (X0 = x) = 1/128. x stands for a continuation or note pitch from the
vocabulary X.

Each song thus had for each note a probability given the prior note. The IC and
entropy of all 55 stimuli were computed by using this probability distribution P (Xt|xt−1

t−k).
The following two formulas were used to compute the IC and entropy:

IC(xt) = −loge(P (xt|xt−1
t−k)) (2.2)

Entropyt = −
127∑
x=0

P (Xt = xt|xt−1
t−k)× logeP (Xt = xt|xt−1

t−k) (2.3)

In this context, IC refers to information content, which serves as a representation of
the surprise or unexpectedness of a musical piece. On the other hand, entropy is used to
represent the level of uncertainty or instability within the music. Both formulas are used
to compute all possible continuations X, where x is each possible continuation from an
alphabetX. This alphabetX will consist of the pitch values of the notes ranging discretely
from 0 to 127. Other values such as time shift and velocity values are disregarded when
computing the IC and entropy.

Gold et al. (2019) computed the IC and entropy just as above, but they did not treat
all events equally. Considering the duration of all events and assigning higher weights to
longer events, they ensured that each 30-second stimulus is represented as one unit. Events
which have a longer duration, contribute more significantly to the overall measure. The
resulting mean duration-weighted information content (mDW-IC) and mean duration-
weighted entropy (mDW-Ent) provide a more comprehensive representation of the impact
of the different notes, considering both their informational content and how long they
persist.

2.4 Experimental design and statistical analysis

Excluding participant 15, which rated every stimulus as familiar, the remaining trials
were tested for linear and quadratic effects. Using the fitlm function in MATLAB, linear
and quadratic regression were performed using the mDW-IC and mDW-Ent as predictor
variables. Both variables predicted the liking ratings separately of all the stimuli from the
participants. Gold et al. (2019) originally chose a linear mixed-effect model, but for an
optimal comparison, the results were also estimated by linear and quadratic regression.
The linear and quadratic effects were evaluated using MATLAB functions. ANOVA
measurements were used to compute the variance of the MT based on the cluster.

I am researching how musical surprise might be involved with the uncertainty of a
musical note, which could affect the liking ratings of the participants. To avoid possi-
ble collinearity of mDW-Ent and mDW-IC, each stimulus is classified according to its
mDW-IC and mDW-Ent into three groups using the k-means clustering algorithm from
MATLAB. Without using the participants liking ratings, the algorithm identified three
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groups with Euclidean distance minimization. The category of low mDW-IC and low
mDW-Ent consisted of 20 stimuli. There were 12 stimuli classified as having medium
mDW-IC and medium mDW-Ent, while 23 stimuli were categorized as having high mDW-
IC and high mDW-Ent (see figure 2.1). These groups represent a robust classification of
the stimuli based on the mDW-Ent and mDW-IC. This clustering was used to test again
for the Wundt effect using the ANOVA model. The different categories, medium, high
and low mDW-IC and mDW-Ent, were compared for researching the preference of the
participants for the complexity of the 55 musical pieces. The interaction between the
different degrees of musical complexity was investigated with the post hoc Tukey-Kramer
Significant Difference test.

Figure 2.1: k-means clustering of the 55 stimuli
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Chapter 3

Results

mDW-IC and mDW-Ent measured by the MT were found to be highly positively corre-
lated (Pearson’s r = 0.8972, p < 0.001, see also figures 3.1a, 3.2a and 3.2b). These results
verify that when the IC of one of the notes increases, the overall entropy of the distri-
bution also increases, indicating higher uncertainty. They are correlated since IC and
entropy both are related concepts which describe the uncertainty of the musical pieces.

(a) (b)

Figure 3.1: (a) Stimulus unpredictability and uncertainty distributions from the MT. (b) Stimulus
unpredictability and uncertainty distribution for both the IDyOM and MT.
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(a) Standardized mDW-IC for all stimuli (b) Standardized mDW-Ent for all stimuli

Figure 3.2: The standardized metrics for all stimuli from the MT

3.1 Models and regression

3.1.1 Measurements from the IDyOM

Gold et al. (2019) found a significant Wundt effect in their results for both mDW-
IC and mDW-Ent which is also modelled in figures 3.3a and 3.3b by doing linear and
quadratic regression again on the human data and output of the IDyOM model 1. The
optimal model for mDW-IC showed a significant negative linear effect (β = −0.20, p <
0.001). Additionally, the model also exhibited a significant negative quadratic effect,
where β = −0.10, p < 0.001. Using ANOVA measurement, the model explained 22,6 %
of the variance in liking ratings (p < 0.001).

Between the mDW-Ent and liking ratings was also a Wundt effect present, the optimal
model contained a significant negative linear effect where β = −0.07, p = 0.045 and a
negative quadratic effect where β = −0.06, p = 0.013. Using ANOVA measurement, the
model explained 4,0 % of the variance in liking ratings (p = 0.049).

(a) (b)

Figure 3.3: (a) The optimal model from the IDyOM of mDW-IC by Gold et al. (2019). (b) The
optimal model from the IDyOM of mDW-Ent by Gold et al. (2019).
The red curve is the fitted quadratic model and the blue dots are representing the mean liking ratings for
each of the 55 stimuli.

1Note that these plots, constructed by using quadratic regression, are similar to the original ones from
the research paper by Gold et al. (2019), which used a linear mixed-effect model.
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Another k-means clustering was done on the IDyOM values from Gold et al. (2019)
where there were only 3 clusters involved. Originally, there were 6 clusters. The ANOVA
measurement was used to further investigate the preferences for the different levels mDW-
IC and mDW-Ent (see figures 3.4a and 3.4b). Both mDW-IC and mDW-Ent have an effect
on the liking ratings (p < 0.001) (see figures 3.5a and 3.5b). Using the post hoc Tukey-
Kramer Honest Significant Difference test again, it can be concluded that for mDW-IC
there was a Wundt effect since high mDW-IC < low mDW- IC: p < 0.001, high mDW-
IC < medium mDW-IC: p < 0.001 and low mDW-IC < medium mDW-IC: p < 0.001
2. Using the same post hoc Tukey-Kramer Honest Significant Difference test it can be
concluded that there are also the same preference: low mDW-Ent < high mDW- Ent:
p < 0.001, high mDW-Ent <medium mDW-Ent: p < 0.001 and low mDW-Ent <medium
mDW-Ent: p < 0.001.

(a) (b)

Figure 3.4: (a) ANOVA model for the mean mDW-IC for each complexity level. (b) ANOVA model
for the mean mDW-Ent for each complexity level.

(a)

(b)

Figure 3.5: (a) ANOVA table for the mean mDW-IC for each complexity level. (b) ANOVA table for
the mean mDW-Ent for each complexity level.

3.1.2 Measurements from the Music Transformer

After testing for outliers using the Z-score method, two stimuli were significant outliers
(47 LesFoliesNo5.mid and 48 LeRossignol.mid, see also Appendix A for more details on
the stimuli). Excluding these two outliers from the regression modelling (see figures 3.6a
and 3.6b), there is a significant Wundt effect between the human liking ratings and mDW-
IC computed by the MT. This fitted model contained a significant positive linear effect

2Note that for both mDW-IC and mDW-Ent the complexity levels are the same when comparing them.
When mDW-IC is low, then mDW-Ent is also low.
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with β = 0.11, p = 0.014 and a negative quadratic effect where β = −0.15, p < 0.001.
Using the ANOVA measurement, the model explained 6,1 % of the variance in liking
ratings (p = 0.014). However, there is not a significant Wundt effect between the human
liking ratings and mDW-Ent computed by the MT (p = 0.333).

(a) (b)

Figure 3.6: (a) The model from the MT of mDW-IC. (b) The model from the MT of mDW-Ent.
The red curve is the fitted quadratic model and the blue dots are representing the mean liking ratings for
each of the 55 stimuli.

Using k-means clustering, the 55 stimuli were categorized according to their degree of
complexity (see figure 2.1). Then ANOVA was used to further investigate the preferences
for the different levels mDW-IC and mDW-Ent (see figures 3.7a and 3.7b). Both mDW-
IC and mDW-Ent have an effect on the liking ratings (p < 0.001) (see figures 3.8a and
3.8b). Using the post hoc Tukey-Kramer Honest Significant Difference test, it can be
concluded that for mDW-IC there was a Wundt effect since high mDW-IC < low mDW-
IC: p < 0.001, high mDW-IC <medium mDW-IC: p < 0.001 and low mDW-IC <medium
mDW-IC: p < 0.001 (see also figure 3.7a). Using the same post hoc Tukey-Kramer Honest
Significant Difference test it can be concluded that there is a significant preference for
stimuli with high mDW-Ent (p < 0.001).

(a) (b)

Figure 3.7: (a) ANOVA model for the mean mDW-IC for each complexity level. (b) ANOVA model
for the mean mDW-Ent for each complexity level.
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(a)

(b)

Figure 3.8: (a) ANOVA table for the mean mDW-IC for each complexity level. (b) ANOVA table for
the mean mDW-Ent for each complexity level.

As can be seen in figures 3.3a, 3.3b, 3.6a and 3.6b, and also in the ANOVA result plots
(see figures 3.4a, 3.4b, 3.7a and 3.7b), compared to the Wundt results form Gold et al.
(2019) only the mDW-IC shows a significant Wundt result. The IDyOM explained 22,6%
of the variance in liking ratings compared with the mDW-IC and the MT only 6,1% based
on the quadratic model. The variance in liking ratings compared with the mDW-Ent was
not significant (p = 0.333). This analysis implies that the human participants desired
more surprising contexts and had a preference for musical pieces with medium mDW-IC.
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Chapter 4

Discussion

Using the MT there is a significant Wundt effect to be found between the liking ratings
of the participants and mDW-IC. It validates a relation between the complexity of music
and how much humans enjoy it. As described above, there is evidence that listeners
like medium complexity 1 more than high and low complexity which was measured by
the MT. Quadratic models were made based on linear regression for both models, with
unpredictability, denoted as mDW-IC and uncertainty, as mDW-Ent as the predictor
variables. Comparing the two models used in this research, the IDyOM and MT, they
both showed a significant Wundt effect when comparing mDW-IC with the human liking
ratings. The IDyOM explained 22,6% of the variance in liking ratings compared with
mDW-IC and the MT 6,1% based on the regression analysis. Two outliers were removed
from the data to ensure that the significance level was met to get the Wundt effect in
the results. Since the explanation of the variance of mDW-Ent compared with the liking
ratings was not significant (p = 0.333), the MT’s measurement could not be compared
to the mDW-Ent from the IDyOM. Solely based on this research, I cannot conclude
that based on a specific degree of uncertainty, the human participants found the stimuli
the most pleasurable. However, given the ANOVA measurement, it showed a significant
preference for medium mDW-IC when mDW-Ent was also medium. Although mDW-
IC and mDW-Ent are highly correlated (Pearson’s r = 0.8972, p < 0.001), the ANOVA
analysis showed that human preferences are more dynamic than just a preference for
higher complexity.

For further research, the optimal values for mDW-IC and mDW-Ent can be taken into
account when for example composing new Western tonal music with the MT. These new
optimal music pieces can be compared with the training corpus of the model and how these
new musical excerpts affect the liking ratings of humans. Considering that humans prefer
medium complexity more than high and low complexity, we can incorporate this into
the Music Transformer when generating new notes according to the optimal probability
distributions. As stated before, it is rewarding to learn about the musical structure of
music to make it more pleasurable for humans. It may be rewarding to optimize the
entropy and IC, as measured in this research when making new music with the Music
Transformer.

The variance which explained the human liking ratings was not expected when using
the MT to explain the human data. There are a few factors which could explain this low
variance. First, the MT was trained on both the Maestro and MCCC corpus, whereas
the IDyOM was trained on a large dataset of Western tonal music. This difference could

1Note that complexity here only entails the information content, which are the surprise elements of
music.
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have affected the alphabet of the MT. The monophonic stimuli were also from the same
genre. Since IDyOM is specifically designed for Western classical music, the performance
on these Western tonal stimuli was already better (Pearce & Wiggins, 2004). If the MT
would have been trained on this same Western tonal corpus, the performance could have
been improved. Second, there appears to be a strong positive correlation between the
standardized mDW-IC and standardized mDW-Ent (Pearson’s r = 0.8972, p < 0.001,
see figure 3.1a). It could have affected the absence of the Wundt effect between the
liking ratings and mDW-Ent given the strong positive correlation. This correlation was
also slightly present in the results from Kern et al. (2022) when computing the surprise
and uncertainty with the pre-trained MT. mDW-IC and mDW-Ent are supposed to be
positively correlated since they are both computed from the same probability distribution,
but this correlation between the two variables was significantly high compared to the
measured mDW-IC and mDW-Ent from the IDyOM (Pearson’s r = 0.44, p < 0.001).
Finally, the interpretation that the participants liked medium complexity more than high
and low complexity could have been supported more if polyphonic music stimuli were
used instead of monophonic stimuli. Polyphonic music sound more like real-world musical
pieces. Polyphonic stimuli were excluded, so the higher complexity distribution was left
undersampled.

Since the data for the second study from Gold et al. (2019) was not provided, the
additional effects of repeating stimuli have not been researched. If these effects were to be
explored, the MT could have possibly shown the Wundt effect again between the liking
ratings and mDW-IC. Also, Gold et al. (2019) studied the Wundt effect of each individual
participant. Researching the individual Wundt effect would have taught me about the
musical sophistication of each participant.

The findings from this thesis are attributed to the computational and predictive power
of the MT. The MT is a powerful Transformer network which again found the Wundt
effect in the comparison between mDW-IC and human liking ratings. It implies that
based on predictions about the surprise and uncertainty of musical notes, we can learn
about how music (as complex as it can sometimes be) can be pleasurable to humans.
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Chapter 5

Data and source code

The pre-trained Music Transformer from Kern et al. (2022) was used from
https://data.donders.ru.nl/collections/di/dccn/DSC 3018045.02 116?0. I adjusted the
python file where the MIDI files are processed as a batch to compute the probability
distribution of the next node given the preceding notes. These alterations and my own
script for computing the Information Content and Entropy can be found on
https://github.com/pcrooijendijk/MTBachelorThesis.
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• Madison, G., & Schiölde, G. (2017). Repeated Listening Increases the Liking for Music Regard-
less of Its Complexity: Implications for the Appreciation and Aesthetics of Music. Frontiers in
Neuroscience, 11. https://doi.org/10.3389/fnins.2017.00147

• Pearce, M. T. (2018). Statistical learning and probabilistic prediction in music cognition: mecha-
nisms of stylistic enculturation. Annals of the New York Academy of Sciences, 1423(1), 378–395.
https://doi.org/10.1111/nyas.13654

• Pearce, M. T., &Wiggins, G. A. (2004). Improved Methods for Statistical Modelling of Monophonic
Music. Journal of NewMusic Research, 33(4), 367–385. https://doi.org/10.1080/0929821052000343840

• Rahali, A., & Akhloufi, M. A. (2023). End-to-End Transformer-Based Models in Textual-Based
NLP. AI, 4(1), 54–110. https://doi.org/10.3390/ai4010004

• Rossing, T. D., & Stumpf, F. B. (1998). The Science of Sound. American Journal of Physics.
https://doi.org/10.1119/1.12962

• Salimpoor, V. N., Zald, D. H., Zatorre, R. J., Dagher, A., & McIntosh, A. R. (2015). Predictions
and the brain: how musical sounds become rewarding. Trends in Cognitive Sciences, 19(2), 86–91.
https://doi.org/10.1016/j.tics.2014.12.001
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Appendix A

Appendix (optional)

(a) (b)

Figure A.1: (a) The optimal model from the IDyOM of mDW-IC by Gold et al. (2019). (b) The
optimal model from the IDyOM of mDW-Ent by Gold et al. (2019).
The red curve indicates the fitted quadratic model and the blue dots represent the liking ratings from
each participant for each stimulus (1906 trials in total).

(a) (b)

Figure A.2: (a) The model from the MT of mDW-IC without the two outliers removed. (b) The model
from the MT of mDW-Ent without the two outliers removed.
The red curve indicates the fitted quadratic model and the blue dots represent the liking ratings from
each participant for each stimulus (1906 trials in total).
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Piece Excerpt time (ap-
proximate)

Composer Year Key Meter

Streams of Kil-
naspig

0:00 – 0:30 Irish traditional Unknown G major Compound duple

Eighteen Studies
for the Flute, Op.
41, No. 11

1:30 –2:00 Joachim Andersen 1891 F major Simple duple

When This Cruel
War is Over

1:00 –1:30 American tradi-
tional

1863 Bb major Simple duple

Seven Variations
on a Theme from
Silvana, J. 128,
Op. 33, Var. 7

8:00 – 8:30 Carl Maria von
Weber

1854 Bb major Compound duple

12 Fantasias for
Solo Flute, No. 3,
Vivace

0:45–1:15 Georg Philipp
Telemann

1733 B minor Simple duple

Eighteen Studies
for the Flute, Op.
41, No. 18

0:50 –1:20 Joachim Andersen 1891 F minor Compound duple

12 Fantasias for
Solo Flute, No. 3,
Vivace

0:10 – 0:40 Georg Philipp
Telemann

1733 B minor Simple duple

Young Cowherd 0:00 – 0:30 Chinese tradi-
tional

Unknown G major Simple duple

Sakura 0:00 – 0:30 Japanese tradi-
tional

Unknown D minor Simple duple

Orchestral Suite
No. 2 in B minor,
BWV 1067

2:45–3:15 Johann Sebastian
Bach

1739 B minor Simple duple

Eighteen Studies
for the Flute, Op.
41, No. 1

0:45–1:15 Joachim Andersen 1891 C major Simple duple

Five Divertimen-
tos, K. 439b, No.
2, mvmt. 4

0:50 –1:20 Wolfgang
Amadeus Mozart

1785 C major Simple triple

Gavotte 0:00 – 0:30 François-Joseph
Gossec

Unknown C major Simple duple

Maiden Voyage 2:50 –3:20 Herbie Hancock 1965 F minor Compound duple

Seven Variations
on a Theme from
Silvana, J. 128,
Op. 33, Theme

0:00 – 0:30 Carl Maria von
Weber

1854 Bb major Compound duple

Drei Fantasi-
estücke, Op. 73,
No. 1

0:30 – 1:00 Robert Schumann 1849 A minor Simple duple

Five Divertimen-
tos, K. 439b, No.
2, mvmt. 4

3:50 – 4:20 Wolfgang
Amadeus Mozart

1785 G major Simple triple

35 Exercises for
Flute, Op. 33,
No. 3

1:00 – 1:30 Ernesto Koehler 1880s F major Simple triple

Eighteen Studies
for the Flute, Op.
41, No. 6

1:00 – 1:30 Joachim Andersen 1891 B minor Simple triple

Carmen Suite No.
1, Aragonaise

0:45 – 1:15 Georges Bizet 1882 D minor Simple triple

Orchestral Suite
No. 2 in B minor,
BWV 1067

0:00 – 0:30 Johann Sebastian
Bach

1739 B minor Simple duple

35 Exercises for
Flute, Op. 33,
No. 15

0:00 – 0:30 Ernesto Koehler 1880s E major Simple duple

Drei Fantasi-
estücke, Op. 73,
No. 1

1:15 – 1:45 Robert Schumann 1849 A minor Simple duple

Eighteen Studies
for the Flute, Op.
41, No. 10

0:00 – 0:30 Joachim Andersen 1891 C# minor Compound duple

35 Exercises for
Flute, Op. 33,
No. 10

0:00 – 0:30 Ernesto Koehler 1880s D major Simple duple

Study No. 1 in C
major, Op. 131

0:00 – 0:30 Giuseppe Gari-
boldi

1900 C major Simple duple

Flute Concerto
No. 2 in G minor,
RV439 ”La notte”

10:00 – 10:30 Antonio Vivaldi 1729 C minor Simple duple
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Piece Excerpt time (ap-
proximate)

Composer Year Key Meter

Dolly Suite Op.
56, No. 1

0:10 – 0:40 Gabriel Fauré 1893 G major Simple duple

Flute Concerto
No. 2 in G minor,
RV439 ”La notte”

9:15 – 9:45 Antonio Vivaldi 1729 G minor Simple duple

Solo de Concours 4:00 – 4:30 André Messager 1899 Bb major Simple duple

Student Instru-
mental Course:
Flute Student,
Level II book: pg.
12 exercise no. 2

0:10 – 0:40 Douglas Steens-
land, Fred Weber

2000 Ab major Simple duple

Eighteen Studies
for the Flute, Op.
41, No. 6

0:00 – 0:30 Joachim Andersen 1891 B minor Simple triple

Fantaisie, Op. 79 0:30 – 1:00 Gabriel Fauré 1898 E minor Simple triple

12 Fantasias for
Solo Flute, No. 5,
Allegro

0:37 – 1:17 Georg Philipp
Telemann

1733 C major Simple triple

12 Fantasias for
Solo Flute, No.
10, Dolce

1:57 – 2:27 Georg Philipp
Telemann

1733 G minor Simple duple

35 Exercises for
Flute, Op. 33,
No. 2

0:07 – 0:37 Ernesto Koehler 1880s G major Simple duple

12 Fantasias for
Solo Flute, No.
10, Presto

2:45 – 3:15 Georg Philipp
Telemann

1733 F# minor Simple triple

Eighteen Studies
for the Flute, Op.
41, No. 8

1:30 – 2:00 Joachim Andersen 1891 F# minor Simple triple

Con Alma 1:15 – 1:45 Dizzy Gillespie 1954 Ab major Simple duple

35 Exercises for
Flute, Op. 33,
No. 11

1:00 – 1:30 Ernesto Koehler 1880s A minor Compound duple

Syrinx 2:15 – 2:45 Claude Debussy 1913 Bb minor Simple triple

Orchestral Suite
No. 2 in B minor,
BWV 1067

3:45 – 4:15 Johann Sebastian
Bach

1739 E minor Simple duple

Nocturnes, Op.
37, No. 1

0:30 – 1:00 Frédéric Chopin 1839 C minor Simple duple

Seven Early
Songs, Die
Nachtigall

0:30 – 1:00 Alban Berg 1907 A major Simple triple

Les Folies
d’Espagne, Nos. 7
and 8

0:10 – 0:40 Marin Marais 1701 E minor Simple triple

Nocturnes, Op.
37, No. 1

0:00 – 0:30 Frédéric Chopin 1839 C minor Simple duple

Les Folies
d’Espagne, No. 5

0:00 – 0:30 Marin Marais 1701 E minor Simple triple

Le Rossignol en
Amour

1:45 – 2:15 François Couperin 1722 G major Simple triple

Caravan 0:00 – 0:30 Duke Ellington,
Juan Tizol

1936 C minor Simple duple

Citygate/Rumble 1:00 – 1:30 Chick Corea 1986 Db major Simple duple

First Rhapsody 0:30 – 1:00 Claude Debussy 1910 F# minor, E mi-
nor

Simple duple

Alone Together 0:45 – 1:15 Arthur Schwartz 1932 D minor Simple duple

Seven Early
Songs,
Traumgekrönt

0:30 – 1:00 Alban Berg 1908 G minor Simple duple

Les Folies
d’Espagne, No. 1

0:00 – 0:30 Marin Marais 1701 E minor Compound triple

Le Jamf 0:45 – 1:15 Bobby Jaspar 1960 Eb major Simple duple

Syrinx 0:00 – 0:30 Claude Debussy 1913 Bb minor Simple triple

Mei 0:37 – 1:07 Kazuo Fukushima 1962 Atonal Simple duple

Table A.1: Stimulus details for all 57 experimental stimuli from Gold et al. (2019)
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(a) (b)

Figure A.3: (a) The model from the MT of mDW-IC with the two outliers removed. (b) The model
from the MT of mDW-Ent with the two outliers removed.
The red curve indicates the fitted quadratic model and the blue dots represent the liking ratings from
each participant for each stimulus (1906 trials in total).
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